## BIOLOGY

Q 1. What is the role of NAD+ in cellular respiration?
Option A It is a nucleotide source for ATP synthesis.
Option B It functions as an electron carrier.
Option C It functions as an enzyme.
Option D It is the final electron acceptor for anaerobic respiration.

## Correct Option B

Solution: $\mathrm{NAD}^{+}$molecule acts as a shuttle for electrons during cellular respiration.

## Q 2. Oxygen is not produced during photosynthesis by

Option A Cycas

Option B Nostoc
Option C Green sulphur bacteria
Option D Chara

## Correct Option C

Solution: Green sulphur bacteria utilise $\mathrm{H}_{2} \mathrm{~S}$ instead of $\mathrm{H}_{2} \mathrm{O}$ and performs an oxygenic photosynthesis. So, they do not evolve oxygen.

## Q 3. Double fertilisation is

Option A Fusion of two male gametes with one egg
Option B Fusion of one male gamete with two polar nuclei
Option C Fusion of two male gametes of a pollen tube with two different eggs
Option D Syngamy and triple fusion

## Correct Option D

Solution: In angiosperms, double fertilisation refers to the fusion of one sperm cell with an egg (syngamy), and another sperm cell with the polar nuclei to yield a triploid endosperm (triple fusion).

## Q 4. In which of the following forms is iron adsorbed by plants?

Option A Free element
Option B Ferrous
Option C Ferric
Option D Both ferric and ferrous

## Correct Option C

Solution: Plants absorb iron mostly in the form of ferric ( $\mathrm{Fe}^{3+}$ ) ions (as per NCERT). However, plants in the acidic soil can absorb iron in ferrous ( $\mathrm{Fe}^{2+}$ ) as well as ferric ( $\mathrm{Fe}^{3+}$ ) form. Iron is reversibly oxidised from $\mathrm{Fe}^{2+}$ to $\mathrm{Fe}^{3+}$ during electron transfer.
Q 5. Which of the following elements is responsible for maintaining turgor in cells?
Option A

| Option B | Potassium |
| :--- | :--- |
| Option C | Magnesium |
| Option D | Calcium |
| Correct | Option A |

Solution: Among the given elements, potassium $\left(\mathrm{K}^{+}\right)$is responsible for maintaining turgor pressure in cells because it regulates the proton pumps involved in opening and closing of stomata. Magnesium ( $\mathrm{Mg}^{2+}$ ) is a constituent of chlorophyll pigment which helps in photosynthesis in green plants. Calcium ( $\mathrm{Ca}^{2+}$ ) provides selective permeability to the cell membrane. Sodium ( $\mathrm{Na}^{+}$) is involved in membrane permeability.

Q 6. Which one of the following plants shows a very close relationship with a species of moth, where none of the two can complete, its life cycle without the other?

| Option A | Banana |
| :--- | :--- |
| Option B | Yucca |
| Option C | Hydria |
| Option D | Viola |

## Correct Option B

Solution: Yucca gloriosa has developed an obligate symbiotic relationship with pronuba moth. The female yucca moth is the sole pollinator of the yucca plant, and the yucca is the only caterpillar host plant of the yucca moth.

Q 7. Pollen grains can be stored for several years in liquid nitrogen having temperature of Option A $\quad-196^{\circ} \mathrm{C}$
Option B $\quad-80^{\circ} \mathrm{C}$
Option C $\quad-120^{\circ} \mathrm{C}$
Option D $\quad-160^{\circ} \mathrm{C}$

## Correct Option A

Solution: Pollen grains can be stored for several years in liquid nitrogen having temperature of $-196^{\circ} \mathrm{C}$. This method is called cryopreservation. The low temperature allows storage for a longer period by reducing the growth rate of cells. The cry protective agents delay the aging of plants and protect the plants from the damages due to cold.

Q 8. What type of ecological pyramid would be obtained with the following data? Secondary consumer: $\mathbf{1 2 0} \mathrm{g}$
Primary consumer: 60 g
Primary Producer: 10 g
Option A Upright pyramid of numbers
Option B Pyramid of energy
Option C Inverted pyramid of biomass
Option D Upright pyramid of biomass

## Correct Option C

Solution: The given data depicts an inverted pyramid of biomass, usually found in an aquatic ecosystem. Upright pyramid of biomass and numbers are not possible since the data depicts that the biomass of primary producer is less than that of the primary consumer which again is less than the secondary consumers. Pyramid of energy is always upright.

## Q 9. Natality refers to

Option A Number of individuals leaving the habitat
Option B Birth rate
Option C Death rate
Option D Number of individuals entering habitat

## Correct Option B

Solution: Natality is the birth rate within a population. Natality when compared with mortality rate can be used to determine the growth or decrease in a population.

## Q 10. World Ozone Day is celebrated on

| Option A | $16^{\text {th }}$ September |
| :--- | :--- |
| Option B | $21^{\text {st }}$ April |
| Option C | $5^{\text {th }}$ June |
| Option D | $22^{\text {nd }}$ April |

## Correct Option A

Solution: World Ozone Day is celebrated on $16^{\text {th }}$ September. $5^{\text {th }}$ June is World Environment Day. $21^{\text {st }}$ April is National Yellow Bat Day. $22^{\text {nd }}$ April is National Earth Day.

Q 11. In stratosphere, which of the following elements acts as a catalyst in degradation of ozone and release of molecular oxygen?
Option A Fe

Option B Cl
Option C Carbon
Option D Oxygen

## Correct Option B

Solution: CFCs and other halogenated ozone depleting substances are mainly responsible for manmade chemical ozone depletion. CFCs rise into the stratosphere where they are eventually broken down by UV rays from the Sun. This causes them to release free chlorine. The chlorine reacts with oxygen which leads to the chemical process of destroying ozone molecules.

## $Q$ 12. Niche is

Option A The range of temperature that the organism needs to live.
Option B The physical space where an organism live.
Option c All the biological factors in the organism's environment.
Option D The functional role played by the organism where it lives.

## Correct Option D

Solution: Joseph Grinnell in 1917 coined the term niche which he used as largely equivalent to a species habitat. Niche refers to the functional role played by the organism where it lives.

## Q 13. Which of the following is a secondary pollutant?

Option A $\quad \mathrm{SO}_{2}$

Option B $\quad \mathrm{CO}_{2}$
Option C CO
Option D $\quad \mathrm{O}_{3}$

## Correct Option D

Solution: A primary pollutant is a pollutant emitted directly from a source. A secondary pollutant is not directly emitted from the source but gets formed when other primary pollutants react in the atmosphere. Ozone $\left(\mathrm{O}_{3}\right)$ is a secondary pollutant.

Q 14. Which of the following statement is correct?
Option A Horsetails are gymnosperms.
Option B Selaginella is heterosporous while Salvinia is homosporous.
Option C Ovules are not enclosed by ovary wall in gymnosperms.
Option D Stems are usually unbranched in both Cycas and Cedrus.

## Correct option C

Solution: In gymnosperms, ovules are not enclosed by ovary wall. Seeds are not enclosed within the fruit. They are naked. Horsetail is the common name of Equisetum. Pteridophytes like Selaginella and Salvinia are heterosporous and possess two types of spores, i.e. microspores and megaspores. Cycas has an unbranched columnar stem while Cedrus possess branched stem.

| Q 15. Pneumatophores occurs in |  |
| :--- | :--- |
| Option A | Carnivorous plants |
| Option B | Free-floating hydrophytes |
| Option C | Halophytes |
| Option D | Submerged hydrophytes |

## Correct Option C

Solution: Some lateral roots of mangroves become specialised as pneumatophores in saline mud flats. These are lateral roots that grow upward for varying distances and function as the site of oxygen intake for the submerged primary root system.

## Q 16. Sweet potato is a modified

Option A Tap root
Option B Adventitious root
Option C Stem
Option D Rhizome

## Correct Option B

Solution: Sweet potato is a modified adventitious root for the storage of food. Rhizomes are underground modified stem. Tap root is a primary root directly elongated from the radicle.

Q 17. Secondary xylem and phloem in dicot stem are produced by:
Option A Phellogen
Option B Vascular cambium
Option C Apical meristems
Option D Axillary meristems

## Correct Option B

Solution: Secondary tissues are generated from the growth of cambium. Vascular cambium gives rise to secondary xylem on the inside, and secondary phloem on the outside.

## Q 18. Select the wrong statement.

Option A Pseudopodia are locomotory and feeding structures in protozoans.
Option B Mushrooms belong to Basidiomycetes.
Option C Cell wall is present in members of Fungi and Plantae.

Option D Mitochondria are the powerhouse of the cell in all kingdoms except Moneta.

## Correct Option A

Solution: Sporozoans such as Plasmodium are end parasites. They lack Locomotors organelles like cilia, flagella and pseudopodia. Pseudopodia are found in amoeboid protozoans, e.g., Amoeba and Entamoeba.

## Q 19. Casparian strips occur in

| Option A | Cortex |
| :--- | :--- |
| Option B | Pericycle |
| Option C | Epidermis |
| Option D | Endodermis |

## Correct Option D

Solution: Casparian strip is a band of cell wall material deposited in the radial and transverse walls of the endodermis. Casparian strip is made of suberin and sometimes lignin.

Q 20. Plants having little or no secondary growth are
Option A Conifers
Option B Deciduous angiosperms
Option C Grasses
Option d Cycads

## Correct Option C

Solution: Grasses are monocots and monocots usually do not exhibit secondary growth. Palm like monocots have anomalous secondary growth.

Q 21. A 'new' variety of rice was patented by a foreign company, though such varieties have been present in India for a long time. This is related to

| Option A | Lerma Rojo |
| :--- | :--- |
| Option B | Sharbati Sonora |
| Option C | Co-667 |
| Option D | Basmati |

## Correct Option D

Solution: In 1997, an American company got patent rights on Basmati rice through the US patent and trademark office. This variety was actually been derived from Indian farmer's varieties. Indian basmati was crossed with semi-dwarf varieties and claimed as an invention or a novelty. Sharbati Sonora and Lerma Rojo are varieties of wheat.

Q 22. Which of the following is commonly used as a vector for introducing a DNA fragment in human lymphocytes?

| Option A | $\lambda$-phage |
| :--- | :--- |
| Option B | Ti plasmid |
| Option C | Retrovirus |
| Option D | pBR 322 |

Correct Option C
Solution: Retrovirus is commonly used as a vector for introducing a DNA fragment in human lymphocytes.

Q 23. Use of bioresources by multinational companies and organisation without authorisation from the concerned country and its people is called

| Option A | Bio-degradation |
| :--- | :--- |
| Option B | Bio-piracy |
| Option C | Bio-infringement |
| Option D | Bio-exploitation |

## Correct Option B

Solution: Biopiracy refers to the use of bioresources by multinational companies and organisation without authorisation from the country and the people concerned with compensatory payment.

## Q 24. Select the correct match:

| Option A | T.H.Morgan | - | Transduction |
| :--- | :--- | :--- | :--- |
| Option B | $\mathrm{F}_{2} \times$ Recessive parent | - | Dihybrid cross |
| Option C | Ribozyme | - | Nuclei acid |
| Option D | G. Mendel | - | Transformation |

## Correct Option C

Solution: Ribozyme is a catalytic RNA which is a nucleic acid.

Q 25. The correct order of steps in Polymerase Chain Reaction (PCR) is
Option A Denaturation, Extension, Annealing
Option B Annealing, Extension, Denaturation
Option C Extension, Denaturation, Annealing
Option D Denaturation, Annealing, Extension

## Correct option D

Solution: PCR involves three major steps in the synthesis of DNA - (a) denaturation of the template into single strands (b) annealing of primers to each original strand for the synthesis of new strand (c) extension of the new DNA strands from the primers.

Q 26. In India, the organisation responsible for assessing the safety of introducing genetically modified organisms for public use is
Option A Research Committee on Genetic Manipulation (RCGM)
Option B Council for Scientific and industrial Research (CSIR)
Option C Indian Council of Medical Research (ICMR)
Option D Genetic Engineering Appraisal Committee (GEAC)

## Correct Option D

Solution: Indian Government has set up an organisation called Genetic Engineering Appraisal Committee (GEAC) which makes decisions regarding the validity of the GM research and safety of introducing GM organisms for public services.

Q 27. The stage during which separation of the paired homologous chromosomes begins is
Option A Diakinesis

Option B Diplotene
Option C Pachytene
Option D Zygotene

## Correct Option B

Solution: During diplotene stage of meiosis, there is dissolution of synaptonemal complex and the recombined homologous chromosomes of the bivalents tend to separate.

## Q 28. The Golgi complex participates in

Option A Respiration bacteria
Option B Formation of secretory vesicles
Option C Fatty acid breakdown
Option D Activation of amino acid

## Correct Option B

Solution: Golgi complex after processing, packages the substances into vesicles and either stores them for later use or sends them out of the cell. It is also involved in the synthesis of lysosomes.

## Q 29. Stomatal movement is not affected by

| Option A | $\mathrm{O}_{2}$ Concentration |
| :--- | :--- |
| Option B | Light |
| Option C | Temperature |
| Option D | $\mathrm{CO}_{2}$ concentration |

## Correct Option A

Solution: Light, temperature and $\mathrm{CO}_{2}$ concentration affect the opening and closing of stomata. $\mathrm{O}_{2}$ concentration has not effect on this activity.

| Q 30. Stomata in grass leaf are |  |
| :--- | :--- |
| Option A | Rectangular |
| Option B | Kidney shaped |
| Option C | Dumb-bell-shaped |
| Option D | Barrel shaped |

## Correct Option C

Solution: Grass being a monocot, has dumb-bell shaped stomata in its leaves.
Q 31. The two functional groups characteristic of sugars are
Option A $\quad$ carbonyl and phosphate
Option B $\quad$ carbonyl and methyl
Option C $\quad$ hydroxyl and methyl
Option D $\quad$ carbonyl and hydroxyl
Correct Option D
Solution: Sugar is a carbohydrate. Carbohydrates are polyhydroxy aldehydes, ketone or their
derivatives. This implies that they have carbonyl and hydroxyl groups in their structure.

## Q 32. Which of the following is not a product of light reaction of photosynthesis?

Option A NADPH

Option B NADH
Option C ATP
Option D Oxygen

## Correct Option B

Solution: ATP, NADPH and oxygen are products of light reaction while NADH is a product of respiration.

## Q 33. Which of the following is true for nucleolus?

Option A It takes part in spindle formation.
Option B It is a membrane-bound structure.
Option c Larger nucleoli are present in dividing cells.
Option d It is a site for active ribosomal RNA synthesis.

## Correct Option D

Solution: The nucleolus is a large, distinct, spherical sub-compartment of the nucleus in eukaryotic cells. It acts as the site for the synthesis of ribosomal RNA and assembly of ribosomal subunits.

Q 34. Which among the following is not a prokaryote?

| Option A | Nostoc |
| :--- | :--- |
| Option B | Mycobacterium |
| Option C | Saccharomyces |
| Option D | Oscillatoria |

## Correct Option C

Solution: Saccharomyces (yeast) is a unicellular fungi (eukaryote). Mycobacterium is a bacterium. Oscillatoria and Nostoc are cyanobacteria.

| Q 35. Winged pollen gra |  |
| :--- | :--- |
| Option A | Mango |
| Option B | Cycas |
| Option C | Mustard |
| Option D | Pinus |

## Correct Option D

Solution: Winged pollen grains are present in Pinus. Each pollen grain has two wing-like structures which enable it to float in air as an adaptation for dispersal by wind.

## Q 36. After karyogamy followed by meiosis, spores are produced exogenously in

Option A Agaricus

Option B Alternaria
Option C Neurospora
Option D Saccharomyces

## Correct Option A

Solution: In Agaricus (a genus of basidiomycetes), basidiospores or meiospores are produced exogenously. Neurospora (a genus of ascomycetes) produces ascospores as meiospores but endogenously inside the ascus. Alternaria (a genus of deuteromycetes) does not produce sexual spores. Saccharomyces (unicellular ascomycetes) produces ascospores, endogenously.

## Q 37. Which one is wrongly matched?

Option A Gemma cups - Marchantia
Option B Biflagellate zoospores - Brown algae
Option C Uniflagellate gametes - Polysiphonia
Option D Unicellular organism - Chlorella

## Correct Option C

Solution: Polysiphonia is a genus of red algae where asexual spores and gametes are non-motile or non-flagellated.

Q 38. Match the items given in column I with those in column II and select the option given below:

| Column I |  | Column II |
| :--- | :--- | :--- |
| a. | Herbarium | (i) It is a place having a collection of preserved <br> plants and animals. |
| b. | Key | (ii) A list that enumerates methodically all the <br> species found in an area with brief description <br> aiding identification. |
| c. | Museum | (iii) Is a place where dried and pressed plant <br> specimens mounted on sheets are kept. |
| d. | Catalogue | (iv) A booklet containing a list of characters and <br> their alternate which are helpful in identification <br> of various taxa. |


|  | a | b | c | d |
| :--- | :--- | :--- | :--- | :--- |
| Option A | ii | iv | iii | i |
| Option B | iii | ii | i | iv |
| Option C | i | iv | iii | ii |
| Option D | iii | iv | i | ii |

## Correct Option D

Solution: Herbarium is a place where dried and pressed plant specimens mounted on sheets are kept. Key is a booklet containing a list of characters and their alternates which are helpful in identification of various taxa. Museum is a place having a collection of preserved plants and animals. Catalogue is a list that enumerates methodically all the species found in an area with brief description aiding identification.

Q 39. Which of the following flowers only once in its life-time?
Option A Mango
Option B Jackfruit
Option C Bamboo species
Option D Papaya

## Correct option C

Solution: A monocarpic flowers and produces seeds only once before drying, e.g. bamboo. A polycarpic plant reproduces sexually more than once in its lifetime, e.g., jackfruit, mango and papaya.

Q 40. Which of the following pairs is wrongly matched?

| Option A | X0 type sex determination | - | Grasshopper |
| :--- | :--- | :--- | :--- |
| Option B | ABO blood grouping | - | Co-dominance |
| Option C | Starch synthesis in pea | - | Multiple alleles |
| Option d | T.H. Morgan | - | Linkage |

## Correct Option C

Solution: Starch synthesis in pea is controlled by pleiotropic gene. Pleiotropy occurs when one gene influences two or more seemingly unrelated phenotypic traits.

Q 41. Offsets are produced by

| Option A | Parthenocarpy |
| :--- | :--- |
| Option B | Mitotic divisions |
| Option C | Meiotic divisions |
| Option D | Parthenogenesis |

Correct Option B
Solution: Offset is a vegetative part of the plant formed by mitosis.

## Q 42. Which of the following has proved helpful in preserving pollen as fossils?

| Option A | Oil content |
| :--- | :--- |
| Option B | Cellulosic intine |
| Option C | Pollenkitt |
| Option D | Sporopollenin |

## Correct Option D

Solution: Sporopollenin cannot be degraded by enzymes, strong acids and alkalis. Therefore, it is helpful in preserving pollen as fossils.

## Q 43. Select the correct statement:

Option A Spliceosomes take part in translation.
Option B Punnett square was developed by a British scientist.
Option C Franklin Stahl coined the term "linkage".
Option D Transduction was discovered by S. Altman.

## Correct Option B

Solution: Punnett, a British scientist devised the 'Punnett Square' to depict the number and variety of genetic combinations. Franklin Stahl proved the semi-conservative mode of DNA replication. Transduction was discovered Zinder and Lederberg. Spliceosome formation is a part of the posttranscriptional change in eukaryotes.

Q 44. The experimental proof for semiconservative replication of DNA was first shown in a Option A Plant
Option B Bacterium
Option C Fungus
Option D Virus
Correct Option B
Solution: Semiconservative replication of DNA was first shown in a bacterium, Escherichia coli by Matthew Meselson and Franklin Stahl.

Q 45. Select the correct match:
Option A Matthew Meselson and F. Stahl - Pisum sativum
Option B Alfred Hershey and Martha Chase - TMV
Option C Alec Jeffreys - Streptococcus pneumoniae
Option D Francois Jacob and Jacques Monod - Lac operon

## Correct Option D

Solution: Francois Jacob and Jacques Monod proposed the model of gene regulation called operon model (lac operon). Alec Jeffreys gave the DNA fingerprinting technique. Matthew Meselson and F. Stahl gave the semiconservative DNA replication in E.coli. Alfred Hershey and Martha Chase proved DNA as the genetic material and not protein.

Q 46. Match the items given in Column I with those in Column II and select the correct option given below:

|  | Column I | Column II |
| :--- | :--- | :--- |
| a. | Tidal volume | i. 2500-3000 mL |
| b. | Inspiratory reserve volume | ii. $1100-1200 \mathrm{~mL}$ |
| c. | Expiratory reserve volume | iii. $\mathbf{5 0 0 - 5 5 0} \mathbf{~ m L}$ |
| d. | Residual volume | iv. $\mathbf{1 0 0 0 - 1 1 0 0} \mathbf{~ m L}$ |


|  | a | b | c | d |
| :--- | :---: | :---: | :---: | :---: |
| Option A | i | iv | ii | iii |
| Option B | iii | i | iv | ii |
| Option C | iii | ii | i | iv |
| Option D | iv | iii | ii | i |

## Correct Option B

Solution: Tidal volume (TV) is the volume of air inspired or expired during normal respiration. It is approximately 500 mL . Inspiratory reserve volume (IRV) is additional volume of air a person can inspire by forceful inspiration. It is around $2500-3000 \mathrm{~mL}$. Expiratory reserve volume (ERV) is additional volume of air a person can expire by forceful expiration. This averages $1000-1100 \mathrm{~mL}$. Residual volume (RV) is volume of air remaining in lungs even after forceful expiration. This averages 1100-1200 mL.

Q 47. Which of the following options correctly represents the lung conditions in asthma and emphysema respectively?

Option A Increased respiratory surface; Inflammation of bronchioles
Option B Increased number of bronchioles; Increased respiratory surface
Option C Inflammation of bronchioles; Decreased respiratory surface
Option D Decreased respiratory surface; Inflammation a bronchioles

## Correct Option C

Solution: Asthma is a long-term inflammatory disease of the airway of the lungs. It results in difficulty in breathing causing wheezing due to inflammation of bronchi and bronchioles. Emphysema is a chronic disorder in which alveolar walls are damaged due to which the respiratory surface is decreased. It is primarily caused by smoking.

Q 48. Match the items given in Column I with those in Column II and select the correct option given below:

| Column I |  | Column II |  |
| :--- | :--- | ---: | :--- |
| a. | Tricuspid valve | i. | Between left atrium and left ventricle |
| b. | Bicuspid valve | ii.Between right ventricle and pulmonary <br> artery |  |
| c. | Semilunar valve | iii. | Between right atrium and right ventricle |


|  | a | b | c |
| :--- | :---: | :---: | :---: |
| Option A | i | ii | iii |
| Option B | i | iii | ii |
| Option C | iii | i | ii |
| Option D | ii | i | iii |

## Correct Option C

Solution: Tricuspid valves are AV valves present between the right atrium and right ventricle of the heart. Bicuspid valves are AV valves present between the left atrium and left ventricle. Semilunar valves are resent at the openings of the aortic and pulmonary aorta.

## Q 49. All of the following are part of an operon except

Option A an enhancer
Option B structural genes
Option C an operator
Option D a promoter

## Correct Option A

Solution: Unlike eukaryotes, in prokaryotes, the genes are organized into an operon. An operon is made up of several structural genes arranged under a common promoter and regulated by a common operator.

Q 50. AGGTATCGCAT is a sequence from the coding strand of a gene. What will be the corresponding sequence of the transcribed mRNA?
Option A ACCUAUGCGAU
Option B UGGTUTCGCAT
Option C AGGUAUCGCAU
Option D UCCAUAGCGUA

## Correct Option C

Solution: Coding strand and mRNA have similar nucleotide sequence except, thymine ( T ) is replaced by uracil ( $U$ ) in mRNA.

## Q 51. According to Hugo de vries, the mechanism of evolution is

| Option a | Phenotypic variation |
| :--- | :--- |
| Option B | Saltation |
| Option C | Multiple step mutations |
| Option D | Minor mutations |

## Correct Option B

Solution: As per the mutation theory given by Hugo de vries, evolution is a discontinuous phenomenon or saltatory phenomenon or saltation.

Q 52. Match the items given in column I with those in column II and select the correct option given below:

| Column I | Column II |  |
| :--- | ---: | :---: |
| a. Proliferative phase | i. Breakdown of endometrial lining |  |
| b. Secretory phase | ii. |  |
|  | Follicular Phase |  |
| c. Menstruation | iii. |  |
| Luteal Phase |  |  |


|  | a | b | c |
| :--- | :---: | :---: | :---: |
| Option A | ii | iii | i |
| Option B | i | iii | ii |
| Option C | iii | ii | i |
| Option D | iii | i | ii |

## Correct Option A

Solution: In proliferative phase, the follicles start developing. Hence, it is also called follicular phase. Secretory phase also called luteal phase is mainly controlled by progesterone secreted by corpus luteum. Menstruation involves breakdown of overgrown endometrial lining.

Q 53. A woman has $X$-linked condition on one of her $X$ chromosomes. This chromosome can be inherited by
Option A Only grandchildren
Option B Only sons
Option C Only daughters
Option D Both sons and daughters

## Correct Option D

Solution: Woman acts as a carrier. Both son and daughter inherit the X chromosome, although only the son would be the deceased one.


Q 54. Ciliates differ from all other protozoans in
Option A Using pseudopodia for capturing prey
Option B Having a contractile vacuole for removing excess water
Option C Using flagella for locomotion
Option D Having two types of nuclei

## Correct Option D

Solution: Ciliates differ from other protozoans in having two types of nuclei. E.g. Paramoecium has two types of nuclei, macronucleus and micronucleus.

Q 55. Identify the vertebrate group of animals characterized by crop and gizzard in their digestive system.

| Option A | Aves |
| :--- | :--- |
| Option B | Reptilia |
| Option C | Amphibia |
| Option D | Osteichthyes |

## Correct Option A

Solution: The digestive tract of Aves has additional chambers called crop and gizzard. Crop is associated with the storage of foodgrains whereas gizzard is a masticatory organ in birds used to crush foodgrains.

Q 56. Which of the following organism are known as chief producers in the ocean?
Option A Cyanobacteria
Option B Diatoms
Option C Dinoflagellates
Option D Euglenoids

## Correct Option B

Solution: Diatoms are the chief producers in some oceans and in some seasons as they are the primary producers of food and the food chain in marine ecosystem depends on them.

Q 57. Which of the following features is used to identify a male cockroach from a female cockroach?
Option A Forewings with darker tegmina
Option B Presence of caudal styles
Option C Presence of a boat shaped sternum on the $9^{\text {th }}$ abdominal segment
Option D Presence of anal cerci

## Correct Option B

Solution: Male cockroaches bear a pair of short, thread-like anal styles which are absent in females. Anal/caudal styles arise from the $9^{\text {th }}$ abdominal segment in male cockroaches.

Q 58. Which of the following animals does not undergo metamorphosis?

| Option A | Moth |
| :--- | :--- |
| Option B | Tunicate |
| Option C | Earthworm |
| Option D | Starfish |

## Correct Option C

Solution: Metamorphosis refers to the transformation of larva into an adult. Animals that undergo metamorphosis are said to have indirect development. Earthworms have a direct development which means no larval stage is formed. Hence, there is no metamorphosis in earthworms.

Q 59. Which one of these animals does not a homeotherm?

| Option A | Camelus |
| :--- | :--- |
| Option B | Chelone |
| Option C | Macropus |
| Option D | Psittacula |
| Correct Option B |  |

Solution: Homeotherms are organisms which have a body temperature that is relatively constant and independent of the environmental temperature. Most mammals including humans as well as birds are endothermic homeotherms. Most fishes, invertebrates, reptiles and amphibians are ectothermic poikilotherms. Chelone (turtle) belongs to class Reptilia. Hence, it is a poikilotherm or cold-blooded animal.

Q 60. The transparent lens in the human eye is held in its place by
Option A Smooth muscles attached to the iris
Option B Ligaments attached to the iris
Option C Ligaments attached to the ciliary body
Option D Smooth muscles attached to the ciliary body

## Correct Option C

Solution: The muscles that move the eyeball are attached to the sclera. Suspensory ligament of lens- a series of fibres that connect the ciliary body of the eye with the lens holding it in place.

Q 61. Which of the following structure or regions is incorrectly paired with its function?

| Option A | Hypothalamus | Production of releasing <br> hormones and regulation of <br> temperature, hunger and thirst |
| :--- | :--- | :--- |
| Option B | Limbic system | Consists of fibre tracts that <br> interconnect different regions of <br> brain; controls movement. |
| Option C | Medulla oblongata | Controls respiration and <br> cardiovascular reflexes |
| Option D | Corpus callosum | Band of fibres connecting left <br> and right cerebral hemispheres |

## Correct Option B

Solution: The limbic system is responsible for the experience and expression of emotion but not movement. It is located in the core of the brain and includes the amygdala, hippocampus and hypothalamus.

Q 62. Which of the following hormones can play a significant role in osteoporosis?
Option A Estrogen and Parathyroid hormone
Option B Progesterone and Aldosterone
Option C Aldosterone and Prolactin
Option D Parathyroid hormone and Prolactin

## Correct Option A

Solution: Osteoporosis is mainly caused due to excess of parathyroid hormone, advanced age and lack of estrogen in older females. Estrogen promotes the activity of osteoblast and inhibits osteoclast. Parathormone promotes mobilisation of calcium from bone into blood. Excessive activity of parathormone causes demineralisation leading to osteoporosis.

Q 63. Which of the following is an amino acid derived hormone?
Option A Estradiol
Option B Ecdysone
Option C Epinephrine
Option D Estriol

## Correct Option C

Solution: Epinephrine is derived from tyrosine by the removal of carboxyl group. It is a catecholamine.

Q 64. Match the items given in column I with those in Column II and select the correct option given below:

| Column I | Column II |
| :--- | :--- |
| a. Glycosuria | i. Accumulation of uric acid in joints |
| b. Gout | ii. Mass of crystallised salts within the <br> kidney |
| c. Renal calculi | iii. Inflammation in glomeruli |
| d. Glomerul nephritis | iv. Presence of glucose in urine |


|  | a | b | c | d |
| :--- | :---: | :---: | :---: | :---: |
| Option A | ii | iii | i | iv |
| Option B | i | ii | iii | iv |
| Option C | iii | ii | iv | i |
| Option D | iv | i | ii | iii |

## Correct Option D

Solution: Glycosuria denotes presence of glucose in the urine. Gout is due to deposition of uric acid crystals in the joint. Renal calculi are precipitates of calcium phosphate produced in the pelvis of the kidney. Glomerular nephritis is the inflammatory condition of glomerulus characterised by proteinuria and haematuria.

Q 65. Match the items given in Column I with those in Colum Ii and select the correct option given below

|  | Column I |  |
| :--- | :--- | :--- |
| a. | Ultrafiltration | i. Henle's loop |
| b. | Concentration of urine | ii. Ureter |
| c. | Transport of urine | iii. Urinary bladder |
| d. | Storage of urine | iv. Malpighian corpuscle |
|  |  | v. Proximal convoluted tubule |


|  | a | b | c | d |
| :--- | :---: | :---: | :---: | :---: |
| Option A | V | iv | i | ii |
| Option B | iv | i | ii | iii |
| Option C | iv | V | ii | iii |
| Option D | v | iv | i | iii |

## Correct Option B

Solution: In renal physiology, ultrafiltration occurs at the barrier between the blood and the filtrate in the glomerular capsule in the kidneys. Concentration of urine refers to water absorption from glomerular filtrate created by counter-current mechanism in Henle's loop. Urine is carried from the kidney to bladder through ureter. Urinary bladder is for storage of urine.

Q 66. Which of the following gastric cells indirectly help in erythropoiesis?
Option A Goblet cell
Option B Mucous cell
Option C Chief cells
Option D Parietal cells

## Correct Option D

Solution: Parietal or oxyntic cell is a source of HCl and intrinsic factor. HCl converts iron present in the diet from ferric to ferrous form so that it can be absorbed easily and used during erythropoiesis. Intrinsic factor is essential for the absorption of vitamin $B_{12}$ and its deficiency causes pernicious anaemia.

## Q 67. Match the items given in Column I with those in Column II and select the correct option given below:

| Column I | Column II |
| :--- | :--- |
| Fibrinogen | Osmotic balance |
| Globulin | Blood clotting |
| Albumin | Defence mechanism |


|  | a | b | c |
| :--- | :---: | :---: | :---: |
| Option A | i | iii | ii |
| Option B | i | ii | iii |
| Option C | iii | ii | i |
| Option D | ii | iii | i |

## Correct Option D

Solution: Fibrinogen forms fibrin strands during coagulation. These strands form a network, the meshes of which are occupied by blood cells. This structure finally forms a clot. Antibodies are derived from gamma-globulin faction of plasma proteins which means globulins are involved in defence mechanisms. Albumin is a plasma protein mainly responsible for Blood Colloidal Osmotic Pressure (BCOP).

## Q 68. Calcium is important in skeletal muscle contraction because it

Option A Detaches the myosin head from the actin filament.
Option B Activates the myosin ATPase by binding to it.
Option C Binds to troponin to remove the masking of active site on actin for myosin.
Option D Prevents the formation of bonds between the myosin cross bridges and the actin filament.

## Correct Option C

Solution: The sarcoplasmic reticulum releases calcium ions into the muscle interior where they bind to troponin, thus causing tropomyosin to shift from the face of the actin filament to which myosin heads need to bind to produce contraction.

## Q 69. Which of the following is an occupational respiratory disorder?

Option A Botulism
Option B Silicosis
Option C Anthracis
Option D Emphysema

## Correct Option B

Solution: Silicosis is an occupational disease caused due to excess inhalation of silica dust in the workers involved in grinding or stone breaking industries.

## Q 70. Which of these statements is incorrect?

Option A Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
Option B Glycolysis occurs in cytosol.
Option C Enzymes of TCA cycle are present mitochondrial matrix.
Option D Oxidative phosphorylation takes place in the outer mitochondrial membrane.

## Correct Option D

Solution: Oxidative phosphorylation takes place in the inner mitochondrial membrane.

Q 71. Nissl bodies are mainly composed of
Option A Nuclei acids and SER
Option B DNA and RNA
Option C Proteins and lipids
Option D Free ribosomes and RER

## Correct Option D

Solution: Nissl bodies are present in the cell body of a neuron. When observed under an electron microscope, they appear to be composed of rough endoplasmic reticulum (RER) and free ribosomes and thus, help in protein synthesis.

Q 72. Select the incorrect match:

| Option A | Sub-metacentric Chromosomes | - | L- shaped chromosomes |
| :--- | :--- | :---: | :--- |
| Option B | Allosomes | - | Sex chromosomes |
| Option C | Lampbrush chromosomes | - | Diplotene bivalents |
| Option D | Polytene chromosomes | - | Oocytes of amphibians |

## Correct Option D

Solution: Polytene chromosomes are found in the salivary glands of insects of order Diptera.
Q 73. Many ribosomes may associate with a single mRNA to form multiple copies of a polypeptide simultaneously. Such strings of ribosomes an termed as
Option A Plastodome
Option B Polyhedral bodies
Option C Polysome
Option D Nucleosome

## Correct Option C

Solution: A polyribosome or polysome is a complex of an mRNA molecule and two or more ribosomes that act to translate the mRNA instructions into polypeptides.

Q 74. Which of the following events does not occur in rough endoplasmic reticulum?
Option A Cleavage of signal peptide
Option B Protein glycosylation
Option C Protein folding
Option D Phospholipid synthesis

## Correct Option D

Solution: Phospholipid synthesis does not take place in rough endoplasmic reticulum (RER). Smooth endoplasmic reticulum (SER) is involved in lipid synthesis.

Q 75. Which of the following terms describe human dentition?
Option A Pleurodont, Monophyodont, Homodont
Option B Thecodont, Diphyodont, Heterodont
Option C Thecodont, Diphyodont, Homodont
Option D Pleurodont, Diphyodont, Heterodont

## Correct Option B

Solution: In thecodont dentition, teeth are present in the sockets of the jaw bone called alveoli. In diphyodont dentition, teeth erupt twice, temporary milk or deciduous teeth are replaced by a set of permanent or adult teeth. In heteredont dentition, it consists of different types of teeth namely incisors, canines, premolars and molars.

## Q 76. In a growing population of a country

Option A Reproductive and pre-reproductive individuals are equal in number
Option B Reproductive individuals are less than the post-reproductive individuals
Option C Pre-reproductive individuals are more than the reproductive individuals
Option D Pre-reproductive, individuals are less than the reproductive individuals
Correct Option C
Solution: Whenever the pre-reproductive individuals or the younger population size is larger than the reproductive group, the population will be an increasing population.

Q 77. Match the items given in Column I with those in Column II and select the correct option given below:

| Column I | Column II |
| :--- | :---: |
| a. Eutrophication | i. UV-B radiation |
| b. Sanitary landfill | ii. Deforestation |
| c. Snow blindness | iii. Nutrient enrichment |
| d. Jhum cultivation | iv. Waste disposal |


|  | a | b | c | d |
| :--- | :---: | :---: | :---: | :---: |
| Option A | iii | iv | i | ii |
| Option B | i | iii | iv | ii |
| Option C | ii | i | iii | iv |
| Option D | i | ii | iv | iii |

## Correct Option A

Solution: Eutrophication is the nutrient enrichment of a water body. Sanitary landfill is a method of solid waste disposal. Snow blindness is characterised by the burning of the cornea by UV-B radiation. Jhum cultivation is the process of growing crops by first clearing the land of trees and vegetation and burning them thereafter.

## Q 78. Which part of poppy plant is used to obtain the drug "Smack"?

Option A Roots
Option B Latex
Option C Flowers
Option D Leaves

## Correct Option B

Solution: Smack also called brown sugar or heroin is formed by the acetylation of morphine. It is obtained from the latex of unripe capsule of Poppy plant (Papaver somniferum).

Q 79. Which one of the following population interactions is widely used in medical science for the production of antibiotics?

| Option A | Parasitism |
| :--- | :--- |
| Option B | Mutualism |
| Option C | Commensalism |
| Option D | Amensalism |

## Correct Option D

Solution: Amensalism is an association between organisms of two different species in which one organism is inhibited or destroyed and the other is unaffected. Antibiotics are chemicals secreted by one microbial group (e.g. Penicillium) which harm the other microbes (e.g. Staphylococcus). They have no effect on Penicillium or the organism which produces them.

## Q 80. All of the following are included in 'ex-situ conservation' except

Option A Botanical gardens

Option B Sacred groves
Option C Wildlife safari parks
Option D Seed banks

## Correct Option B

Solution: In-situ conservation is the on-site conservation or the conservation of genetic resources in natural populations of plant or animal species, e.g. sacred groves.

Q 81. Hormones secreted by the placenta to maintain pregnancy are
Option A hCG, hPL, progestogens, estrogens
Option B hCG, hPL, estrogens, relaxin, oxytocin
Option C hCG, hPL, progestogens, prolactin
Option D hCG, progestogens, estrogens, glucocorticoids

## Correct Option A

Solution: Placenta is an endocrine gland which is present only during pregnancy. It releases hCG, hPL, progestogens and estrogens. Human chorionic gonadotropic hormone (hCG) stimulates the corpus luteum during pregnancy to release estrogen and progesterone. Human placental lactogen (hPL) is involved in the growth of the body of mother and the breasts. Progesterone maintains pregnancy.

## Q 82. The contraceptive "SAHELI'

Option A is an IUD.
Option B increases the concentration of estrogen and prevent ovulation in females.
Option C blocks estrogen receptors in the uterus, preventing eggs from getting implanted.
Option D is a post-coital contraceptive.

## Correct Option C

Solution: Saheli is world's first and the only oral, non-steroidal contraceptive pill which can be consumed once a week. It's functioning is based on selective estrogen receptor modulation and prevents the egg from getting implanted.

## Q 83. The difference between spermiogenesis and spermiation is

Option A In spermiogenesis spermatozoa from Sertoli cells are released into the cavity of seminiferous tubules, while in spermiation spermatozoa are formed.
Option B In spermiogenesis spermatozoa are formed, while in spermiation spermatids are formed.
Option C In spermiogenesis spermatids are formed, while in spermiation spermatozoa are formed.
Option D In spermiogenesis spermatozoa are formed, while in spermiation spermatozoa are released from Sertoli cells into the cavity of seminiferous tubule.

## Correct Option D

Solution: Spermiogenesis is the conversion of spermatids into spermatozoa whereas spermiation is the release of the sperms from the Sertoli cells into the cavity of seminiferous tubule.

## Q 84. The amnion of mammalian embryo is derived from

Option A mesoderm and trophoblast
Option B endoderm and mesoderm
Option C ectoderm and mesoderm
Option D ectoderm and endoderm

## Correct Option C

Solution: The extraembryonic membranes are amnion, chorion, allantois and yolk sac. Amnion is derived from mesoderm on the outer side and ectoderm on the inner side. Chorion is formed from trophoectoderm and mesoderm whereas allantois and yolk sac membrane have mesoderm on the outerside and endoderm on inner side.

Q 85. The similarity of bone structure in the forelimbs of many vertebrates is an example of Option A Convergent evolution
Option B Analogy
Option C Homology
Option D Adaptive radiation

## Correct Option C

Solution: The similarity of bone structure in the forelimbs of many vertebrates is an example of homology. The homologous organs have the same fundamental structure but are adapted to perform different functions, e.g. forelimbs of man, cheetah, whale and bat. Analogous organs show convergent evolution. These organs have similar functions but are different in their structural details and origin.

Q 86. In which disease does mosquito transmitted pathogen cause chronic inflammation of lymphatic vessels?
Option A Ringworm disease
Option B Ascariasis
Option C Elephantiasis
Option D Amoebiasis
Correct Option C
Solution: Lymphatic filariasis also known as elephantiasis is a human disease caused by parasitic filarial worms. It is caused by roundworm Wuchereria bancrofti and is transmitted by the Culex mosquito.

## Q 87. Which of the following is not an autoimmune disease?

Option A Alzheimer's disease
Option B Rheumatoid arthritis
Option C Psoriasis
Option D Vitiligo

## Correct Option A

Solution: Alzheimer's disease is a neurodegenerative disorder caused due to the deficiency of neurotransmitter acetylcholine. Rheumatoid arthritis is an autoimmune disorder in which antibodies are produced against the synovial membrane and cartilage. Vitiligo is also an autoimmune disorder which causes white patches on the skin. Psoriasis is an autoimmune skin disease which causes itchy or sore patches of thick red skin.

Q 88. Which of the following characteristics represent 'Inheritance of blood groups' in humans?
a. Dominance
b. Co-dominance
c. Multiple allele
d. Incomplete dominance
e. Polygenic inheritance

Option A b, d and e
Option B a, b and c
Option C b, c and e
Option D a, c and e

## Correct Option B

Solution: For blood groups in humans,
$\mathrm{I}^{\mathrm{A}} \mathrm{I}^{0}, \mathrm{I}^{\mathrm{B}} \mathrm{I}^{0}$ - Dominant-recessive relationship
$\mathrm{I}^{\mathrm{A} \mathrm{I}^{\mathrm{B}}}$ - Codominance
$I^{\mathrm{A}}, \mathrm{I}^{\mathrm{B}}, \mathrm{I}^{0}-$ Three different allelic forms of a gene (multiple allelism)

Q 89. Among the following sets of examples for divergent evolution, select the incorrect option.
Option A Brain of bat, man and cheetah
Option B Heart of bat, man and cheetah
Option C Forelimbs of man, bat and cheetah
Option D Eye of octopus, bat and man
Correct Option D
Solution: Divergent evolution occurs when two separate species evolve differently from a common ancestor. Divergent evolution demonstrates how species can have common anatomical structures (homologous). Convergent evolution occurs when species have different ancestral origins but have developed similar features. Eye of octopus, bat and man are examples of analogous organs showing convergent evolution.

Q 90. Conversion of milk to curd improves its nutritional value by increasing the amount of Option A Vitamin B12
Option B Vitamin A
Option C Vitamin D
Option D Vitamin E

## Correct Option A

Solution: Curd has increasing amount of vitamins specially vitamin $B_{12}$. This improves its nutritional value than milk.

## CHEMISTRY

Q 1. Following solutions were prepared by mixing different volumes of NaOH and HCI of different concentration:
(a) $\mathbf{6 0} \mathrm{mL} \frac{\mathrm{M}}{10} \mathrm{HCI}+40 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
(b) $55 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCI}+45 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOh}$
(c) $75 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{HCI}+25 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{NaOH}$
(d) $100 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{HCI}+100 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
$\mathbf{p H}$ of which one of them will be equal to 1 ?
Option A d
Option B a
Option C b
Option D c

## Correct Option D

Solution:
Total volume=

$$
\begin{aligned}
& 75 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{HCI}+25 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{NaOH}=100 \mathrm{ml} \\
& 25 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{NaOH} \text { will neutralise } 25 \mathrm{ml} \frac{\mathrm{M}}{5} \mathrm{HCI} \\
& \text { Reamaiming } \mathrm{HCl}=75-25=20 \mathrm{ml} \\
& {\left[\mathrm{H}^{+}\right]=\frac{\mathrm{M}}{10} \times \frac{50}{100}} \\
& \quad=\frac{\mathrm{M}}{10} \\
& \therefore \mathrm{pH}=-\log \frac{1}{10}=1
\end{aligned}
$$

Q 2. On which of the following properties does the coagulating power of an ion depend?
Option A Both magnitude and sing of the charge on the ion
Option B Size of the ion alone
Option C The magnitude of the charge on the ion alone
Option D The sing of charge on the ion alone

## Correct Option C

Solution: Coagulating power of an ion depends on both magnitude and sing of the charge on the ion.

Q 3. The solubility of $\mathrm{BaSO}_{4}$ in water is $2.42 \times 10^{-3} \mathrm{gL}^{-1}$ at 298 K . The value of its solubility product (Ksp) will be (Given molar mass of $\mathrm{BaSO}_{4}=233 \mathbf{g ~ m o l}^{-1}$ )
Option A $\quad 1.08 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
Option B $\quad 1.08 \times 10^{-12} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
Option C $\quad 1.08 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
Option D $\quad 1.08 \times 10^{-8} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
Correct Option C

## Solution:

$$
\begin{aligned}
\mathrm{BaSO}_{4} & \rightarrow \mathrm{Ba}^{2}+\mathrm{So}_{4}^{2-} \\
\mathrm{K}_{\text {sp }} \quad & =\mathrm{s}^{2} \\
& =\left(\frac{2.42 \times 10^{-3}}{233}\right)^{2} \\
& =1.08 \times 10^{-10} \mathrm{~mol}^{2} / \mathrm{It}^{2}
\end{aligned}
$$

Q 4. Given van der Waals constant for $\mathrm{NH}_{3}, \mathrm{H}_{2}, \mathrm{O}_{2}$ and $\mathrm{CO}_{2}$ are respectively 4.17, 0.244, 1.36 and 3.59, which one of the following gases in most easily liquefied?
Option A $\quad \mathrm{O}_{2}$
Option B $\quad \mathrm{H}_{2}$
Option C $\quad \mathrm{NH}_{3}$
Option D $\quad \mathrm{CO}_{2}$

## Correct Option C

Solution: Ease of liquification depends on van der Waal's constant ' $a$ '. It depends on the intermolecular force of attraction.

Q 5. In the reaction


The electrophile involved is
Option A dichloromethyl anion
Option B formyl cation (CHO)
Option C dichloromethyl cation 2 ( CHCl )
Option D dichlorocarbene (: $\mathrm{CCl}_{2}$ )

## Correct Option D

Solution: The electrophile involved in the reaction is dichlorocarbene (: $\mathrm{CCl}_{2}$ )



Q 6. Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
Option A more extensive association of carboxylic acid via van der Waals force of attraction
Option B formation of carboxylate ion
Option C formation of intramolecular H-bonding
Option D formation of intermolecular H-bonding

## Correct Option D

Solution: Carboxylic acids have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to formation of intermolecular H - bonding.


Q 7. Compound $\mathrm{A}, \mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$, is fund to react with NaOI (produced by reacting Y with NaOH ) and yields a yellow precipitate with characteristic smell.
$A$ and $y$ are respectively
Option A


Option B


Option C


Option D


## Solution:


$\mathrm{CHI}_{3}$ gives yellow precipitate and a characteristic medical smell.

Q 8. Magnesium react with an element ( $X$ ) to from an ionic compound. If the ground sate electronic configuration of $(X)$ is $1 s^{\mathbf{2}} \mathbf{2 s} s^{2} \mathbf{2} p^{3}$, the simplest formula for this compound is
Option A $\quad \mathrm{Mg}_{2} \mathrm{X}$
Option B $\quad \mathrm{MgX}_{2}$
Option C $\quad \mathrm{Mg}_{2} \mathrm{X}_{3}$
Option D $\quad \mathrm{Mg}_{3} \mathrm{X}_{2}$

## Correct Option D

Solution:
Electronic configuration of (X) : $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$
Valence of $\mathrm{X}=3$
Electronic configuration of (Mg) : $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2}$
Valence of $\mathrm{Mg}=2$
The formula of compound formed is $\mathrm{Mg}_{3} \mathrm{X}_{2}$
Q 9. Iron exhibits bcc structure at room temperature. Above $900^{\circ} \mathrm{C}$, it transforms to fcc structure. The ratio for density of iron at room temperature to that at $900^{\circ} \mathrm{C}$ (assuming molar mass and atomic radii of iron remains constant with temperature) is
Option A $\quad \frac{3 \sqrt{3}}{4 \sqrt{2}}$
Option B $\quad \frac{4 \sqrt{3}}{3 \sqrt{2}}$
Option C $\frac{\sqrt{3}}{\sqrt{2}}$
Option D $\frac{1}{2}$

## Correct Option A

## Solution:

For fcc lattice: $\mathrm{Z}=4$

$$
\mathrm{a}=\frac{4 \mathrm{r}}{\sqrt{3}}
$$

For bcc lattice: $\mathrm{Z}=2$

$$
a=2 \sqrt{2 r}
$$

$$
\begin{aligned}
\frac{{ }^{\mathrm{d}} \mathrm{bcc}}{{ }^{\mathrm{d} f c c}} & =\frac{\left(\mathrm{ZM} / \mathrm{N}_{\mathrm{A}} \times \mathrm{a}^{3}\right)_{\mathrm{bcc}}}{\left(\mathrm{ZM} / \mathrm{N}_{\mathrm{A}} \times \mathrm{a}^{3}\right)_{\mathrm{fcc}}} \\
& =\frac{\frac{2}{(2 / \sqrt{2})^{3}}}{\frac{4}{(4 \mathrm{r} / \sqrt{3})^{3}}} \\
\frac{\mathrm{~d}_{\mathrm{bcc}}}{\mathrm{~d}_{\mathrm{fcc}}} & =\frac{3 \sqrt{3}}{4 \sqrt{2}}
\end{aligned}
$$

Q 10 .Which one is a wrong statement?
Option A The electronic configuration of N atom is


Option B An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
Option C Total orbital angular momentum of electron in's' orbital is equal to zero
Option D The value of $m$ for $\mathrm{d}_{\mathrm{z}}{ }^{2}$ is zero

## Correct Option A

Solution: The correct electronic configuration of N - atom is


Q 11. Consider the following species:
$\mathrm{CN}^{+}, \mathrm{CN} \cdot$, NO and CN
Which one of these will have the highest bond order?
Option A $\quad \mathrm{CN}^{+}$
Option B CN-
Option C NO
Option D CN
Correct Option B

## Solution:

In CN-

$$
\begin{aligned}
\sigma 1 s^{2}, & \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma^{*} 2 \mathrm{~s}^{2}, \sigma 2 \mathrm{p}_{\mathrm{z}}^{2} \pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}, \sigma 2 \mathrm{p}_{\mathrm{z}}^{2} \\
\mathrm{BO} & =\frac{\text { BMO }- \text { ABMO }}{2} \\
& =\frac{10-4}{2} \\
& =3
\end{aligned}
$$

In CN

$$
\begin{aligned}
\sigma 1 s^{2}, & \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma^{*} 2 \mathrm{~s}^{2}, \sigma 2 \mathrm{p}_{\mathrm{z}}^{2} \pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}, \sigma 2 \mathrm{p}_{\mathrm{z}}^{1} \\
\mathrm{BO} & =\frac{\text { BMO-ABMO }}{2} \\
& =\frac{9-4}{2} \\
& =2.5
\end{aligned}
$$

In $\mathrm{CN}^{+}$

$$
\begin{aligned}
& \sigma 1 \mathrm{~s}^{2}, \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma^{*} 2 \mathrm{~s}^{2}, \sigma 2 \mathrm{p}_{\mathrm{z}}^{2} \pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2} \\
& \mathrm{BO}=\frac{\mathrm{BMO}-\mathrm{ABMO}}{2} \\
&=\frac{8-4}{2} \\
&=2
\end{aligned}
$$

In NO

$$
\begin{aligned}
& \sigma 1 \mathrm{~s}^{2}, \sigma^{*} 1 \mathrm{~s}^{2}, \sigma 2 \mathrm{~s}^{2}, \sigma^{*} 2 \mathrm{~s}^{2}, \sigma 2 \mathrm{p}_{\mathrm{z}}^{2} \pi 2 \mathrm{p}_{\mathrm{x}}^{2}=\pi 2 \mathrm{p}_{\mathrm{y}}^{2}, \pi^{*} 2 \mathrm{p}_{\mathrm{x}}^{1}=\pi^{*} 2 \mathrm{p}_{\mathrm{y}}^{0} \\
& \text { BO }=\frac{\text { BMO-ABMO }}{2} \\
&=\frac{10-5}{2} \\
&=2.5
\end{aligned}
$$

Q 12. In the structure of CIF ${ }_{3}$, the number of lone pairs of electrons on central atom 'CI' is:
Option A four
Option B two
Option C one
Option D three

## Correct Option B

Solution:

$Q$ 13. The correct order of atomic radii in group 13 elements is:

| Option A | $\mathrm{B}<\mathrm{Ga}<\mathrm{AI}<\mathrm{TI}<\mathrm{In}$ |
| :---: | :---: |
| Option B | $\mathrm{B}<\mathrm{AI}<\mathrm{Ga}<\mathrm{In}<\mathrm{TI}$ |
| Option C | B $<\mathrm{AI}<\mathrm{In}<\mathrm{Ga}<\mathrm{TI}$ |
| Option D | $\mathrm{B}<\mathrm{Ga}<\mathrm{AI}<\mathrm{In}<$ |
| Correct Option D |  |
| olu | < |

$\mathrm{Ga}, \mathrm{Tl}, \mathrm{In}$ have d - electrons, which are less efficient at shielding the nuclear charge than s and p electrons. Due to the poor shielding, the outer electron are firmly held by the nucleus. Therefore the size of atoms with $\mathrm{d}^{10}$ shell are smaller than expected.

Q 14. The correct order of $\mathbf{N}$ - compounds in its decreasing order of oxidation states is:
Option A $\quad \mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{CI}, \mathrm{No}, \mathrm{N}_{2}$
Option B $\quad \mathrm{HNO}_{3}, \mathrm{No}, \mathrm{NH}_{4} \mathrm{CI}, \mathrm{N}_{2}$
Option C $\quad \mathrm{HNO}_{3}, \mathrm{No}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{CI}$
Option D $\quad \mathrm{NH}_{4} \mathrm{CI}, \mathrm{N}_{2}, \mathrm{No}, \mathrm{HNO}_{3}$
Correct Option C
Solution: The correct order of N - compounds in its decreasing order of oxidation states is
$\stackrel{+5}{\mathrm{HNO}_{3}}>\stackrel{+2}{\mathrm{NO}}>\stackrel{0}{\mathrm{~N}_{2}}>{\stackrel{-3}{\mathrm{NH}_{4} \mathrm{CI}}}^{\mathrm{Cl}}$

## Q 15. Which one of the following elements is unable to from $\mathrm{MF}_{6}^{3-}$ ion?

Option A B
Option B AI
Option C Ga
Option D In

## Correct Option A

Solution: B (5): $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{1}$
Due to absence of vacant d-orbitals in boron it is unable to form $\mathbf{M F}_{6}^{\mathbf{3 -}}$ ion

Q 16. Which of the following statements is not true for halogens?
Option A All shows positive oxidation states
Option B All are oxidation agents
Option C All from monobasic oxyacids
Option D Chlorine has the highest electron-gain enthalpy

## Correct Option A

Solution: Fluorine has high ionisation energy due small size. It forms oxyacid HOF. The oxidation number of F in HOF is +1 .

Q 17. Considering Ellingham diagram, which of the following metals can be used to reduce alumina?
Option A Mg
Option B Zn
Option C $\quad \mathrm{Fe}$
Option D Cu
Correct Option A

## Solution:

Metals with more negative $\Delta \mathrm{G}$ value can reduce the metal oxides with low negative $\Delta \mathrm{G}$ value.
MgO is in the lower part of the Ellingham diagram as it has more negative $\Delta \mathrm{G}$ value than alumina.

Q 18. For the redox reaction $\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \rightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ the correct coefficients of the reactants for the balanced equation are:

|  | $\mathrm{MnO}_{4}^{-}$ | $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ | $\mathrm{H}^{+}$ |
| :--- | :--- | :--- | :--- |
| Option A | 2 | 16 | 5 |
| Option B | 2 | 5 | 16 |
| Option C | 16 | 5 | 2 |
| Option D | 5 | 16 | 2 |

## Correct Option B

## Solution:

$5 \mathrm{e}^{-}$gain
$\stackrel{+7}{\mathrm{Mn}} \mathrm{O}_{4}^{-} \rightarrow \stackrel{+2}{\mathrm{Mn}^{2+}}$
Loss of $2 \mathrm{e}^{-}$
$\stackrel{+3}{\mathrm{C}_{2}} \mathrm{O}_{4}^{2-} \rightarrow \stackrel{+4}{\mathrm{C}} \mathrm{O}_{2}$
Balanced equation is,
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}$
On balancing charge, the equation can be written as,
$2 \mathrm{MnO}_{4}^{-}+5 \mathrm{C}_{2} \mathrm{O}_{4}^{2-}+16 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+10 \mathrm{CO}_{2}+8 \mathrm{H}_{2} \mathrm{O}$

Q 19. Which one of the following conditions will favour maximum formation of the product in the reaction: $\mathbf{A}_{\mathbf{2}(\mathrm{g})}+\mathrm{B}_{2} \rightleftharpoons \mathbf{X}_{2(\mathrm{~g})} \quad \Delta_{2} \mathbf{H}=-\mathrm{X} \mathrm{kJ}$
Option A High temperature and high pressure
Option B Low temperature and low pressure
Option C Low temperature and high pressure
Option D High temperature and low pressure

## Correct Option C

Solution: On Increasing pressure, reaction will shift in to the direction where number of moles decreases i.e. forward direction.
For exothermic reactions lower temperature favors product.

Q 20. The correction factor ' $a$ ' to the ideal gas equation corresponds to:
Option A electric field present between the gas molecules
Option B volume of the gas molecules
Option C density of the gas molecules
Option D forces of attraction between the gas molecules

## Correct Option D

Solution: The correction factor, ' $a$ ' to the ideal gas equation corresponds to the force of attraction between the gas molecules.

Q 21. When initial concentration of the reactant is doubled, the half-life period of a zero order reaction:
Option A is tripled
Option B is doubled
Option C is halved
Option D remains unchanged

## Correct Option B

## Solution:

$\mathrm{t}_{1 / 2}=\frac{\text { Initialconcentration }}{2 \mathrm{k}}$
$\mathrm{t}_{1 / 2} \propto$ Initial concentration
Therefore, the half-life period of a zero order reaction is will be doubled, when initial concentration of the reactant is doubled,

Q 22. The bond dissociation energies of $X_{2}, Y_{2}$ and $X Y$ are in the ratio of 1:05:1. $\Delta H$ for the formation of $X Y$ is $\mathbf{- 2 0 0} \mathbf{~ k J ~ m o l}^{-1}$. The bond dissociation energy of $X_{2}$ will be:
Option A $\quad 800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Option B $\quad 100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Option C $\quad 200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Option D $\quad 400 \mathrm{~kJ} \mathrm{~mol}^{-1}$

## Correct Option A

## Solution:

$$
\begin{aligned}
1 / 2 & \mathrm{X}_{2}+1 / 2 \mathrm{Y}_{2} \longrightarrow \mathrm{XY} \\
\Delta_{\mathrm{r}} \mathrm{H} & =\sum \mathrm{B}_{\mathrm{E}} \text { (Reactants) }-\sum \mathrm{B}_{\left(\mathrm{E}_{\text {(Products) }}\right)} \\
-200 & =\frac{1}{2} \mathrm{a}+\frac{0.5}{2} \mathrm{a}-\mathrm{a} \\
& =\frac{1}{2} \mathrm{a}+\frac{1}{4} \mathrm{a}-\mathrm{a} \\
& =\frac{3}{4} \mathrm{a}-\mathrm{a} \\
& =-\frac{1}{4} \mathrm{a} \\
\mathrm{a} & =800 \mathrm{kj} / \mathrm{mol}
\end{aligned}
$$

Q 23. Match the metal ions given in column I with the spin magnetic moments of the ions given in Column II and assign the correct code:

| Column I | Column II |
| :--- | :--- |
| $\mathrm{Co}^{3+}$ | i. $\sqrt{8}$ B.M. |
| $\mathrm{Cr}^{3+}$ | ii. $\sqrt{35}$ B.M. |
| $\mathrm{Fe}^{3+}$ | iii. $\sqrt{3}$ B.M. |
| $\mathrm{Ni}^{2+}$ | iv. $\sqrt{24}$ B.M. |
|  | v. $\sqrt{15}$ B.M. |


|  | a | b | c | d |
| :--- | :--- | :--- | :--- | :--- |
| Option (A) | iv | i | ii | iii |
| Option (B) | i | ii | iii | iv |
| Option (C) | iv | v | ii | i |
| Option (D) | iii | v | i | ii |

## Correct Option C

## Solution:

$\mathrm{Co}^{3+}-[\mathrm{Ar}] 3 \mathrm{~d}^{6}$, unpaired $\mathrm{e}^{-}(\mathrm{n})=4, \mu=\sqrt{\mathrm{n}(\mathrm{n}+2)} \mathrm{BM}=\sqrt{24} \mathrm{BM}$
$\mathrm{Cr}^{3+}-[\mathrm{Ar}] 3 \mathrm{~d}^{3}$, unpaired $\mathrm{e}^{-}(\mathrm{n})=3, \mu=\sqrt{\mathrm{n}(\mathrm{n}+2)} \mathrm{BM}=\sqrt{15} \mathrm{BM}$
$\mathrm{Fe}^{3+}-[\mathrm{Ar}] 3 \mathrm{~d}^{5}$, unpaired $\mathrm{e}^{-}(\mathrm{n})=5, \mu=\sqrt{\mathrm{n}(\mathrm{n}+2)} \mathrm{BM}=\sqrt{35} \mathrm{BM}$
$\mathrm{Ni}^{2+}-[\mathrm{Ar}] 3 \mathrm{~d}^{8}$, unpaired $\mathrm{e}^{-}(\mathrm{n})=2, \mu=\sqrt{\mathrm{n}(\mathrm{n}+2)} \mathrm{BM}=\sqrt{8} \mathrm{BM}$

Q 24. Which one of the following ions exhibits $d$-d transition and paramagnetism as well?
Option A $\quad \mathrm{MnO}_{4}^{-}$
Option B $\quad \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
Option C $\quad \mathrm{CrO}_{4}^{2-}$
Option D $\quad \mathrm{MnO}_{4}^{2-}$

## Correct Option D

Solution: $\mathrm{MnO}_{4}^{2-} \mathrm{Mn}^{6+}[\mathrm{Ar}] \mathrm{d}^{1}$
Unpaired electron = 1
Therefore it is paramagnetic and it will show d-d transition.
$Q$ 25. The type of isomerism shown by the complex $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]$ is
Option A Ionization isomerism
Option B Coordination isomerism
Option C Geometrical isomerism
Option D Linkage isomerism

## Correct Option C

Solution: The co-ordination number of Co is 6 . The complex has octahedral geometry.


Cis-form


Trans-form

Q 26. The geometry and magnetic behaviour of the complex [ $\left.\mathrm{Ni}(\mathrm{CO})_{4}\right]$ are
Option A square planar geometry and paramagnetic
Option B tetrahedral geometry and diamagnetic
Option C square planar geometry and diamagnetic
Option D tetrahedral geometry and paramagnetic

## Correct Option B

## Solution:

## $\mathrm{Ni}(\mathrm{CO})_{4} \mathbf{N i}$ (28): [Ar] 3d $\mathbf{4 s}^{\mathbf{2}}$


$\mathrm{Ni}\left(\mathrm{CO}_{4}\right)$


The hybridization is $\mathbf{s p}^{3}$, so the geometry is tetrahedral and it is diamagnetic.
Q 27. Iron carbonyl. $\mathrm{Fe}(\mathrm{CO})_{5}$ is
Option A trinuclear
Option B mononuclear
Option C tetranuclear
Option D dinuclear

## Correct Option B

Solution: $\mathrm{Fe}(\mathrm{CO})_{5}$ is mononuclear as only one central metal atom is present.

Q 28. The correct difference between first and second-order reaction is that
Option A A first-order reaction can be catalysed; a second-order reaction cannot be catalysed Option B The half-life of a first-order reaction does not depend on $[A]_{0}$; the half-life of a second-order reaction does depend on $[\mathrm{A}]_{0}$
Option C The rate of a first - order reaction does not depend on reaction concentrations; the rate of a second order reaction does depend on reactant concentrations
Option D The rate of a first-order reaction does depend on reactant concentration; the rate of a second-order reaction does not depend on reactant concentrations

## Correct Option B

Solution:
For first order reaction:
$\mathrm{t}_{1 / 2}=\frac{0.693}{\mathrm{k}}$
(indepedent of Initial concentration)
For second order reaction:
$\mathrm{t}_{1 / 2}=\frac{1}{\mathrm{k} \times \text { Initial concentration }}$
(depends on initial concentration)

Q 29. Among $\mathrm{CaH}_{2}, \mathrm{BeH}_{2}, \mathrm{BaH}_{2}$, the order of ionic character is
Option A $\quad \mathrm{BeH}_{2}<\mathrm{BaH}_{2}<\mathrm{CaH}_{2}$
Option B $\mathrm{CaH}_{2}<\mathrm{BeH}_{2}<\mathrm{BaH}_{2}$
Option C $\quad \mathrm{BeH}_{2}<\mathrm{CaH}_{2}<\mathrm{BaH}_{2}$
Option D $\quad \mathrm{BaH}_{2}<\mathrm{BeH}_{2}<\mathrm{CaH}_{2}$
Correct Option C
Solution: $\xrightarrow[\text { Polarisation } \downarrow \text { Ionic character } \uparrow]{\mathrm{BeH}_{2}<\mathrm{CaH}_{2}<\mathrm{BaH}_{2}}$

Q 30.Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below:


Then the species undergoing disproportionation is
Option A $\quad \mathrm{Br}_{2}$
Option B $\quad \mathrm{BrO}_{4}^{-}$
Option C $\quad \mathrm{BrO}_{3}^{-}$
Option D HBrO

## Correct Option B

## Solution:

$\mathrm{As}, \mathrm{BrO}_{4}{ }^{-}$is present in its highest oxidation
State ( +7 ), so it will not undergo disproportionation,
Fro, $\mathrm{BrO}_{3}{ }^{-}$

$$
\begin{aligned}
& \therefore(1)+(2)=(3) \\
& 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{BrO}_{3}^{-} \rightarrow 2 \mathrm{BrO}_{4}^{-}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}-(1), \\
& \\
& \mathrm{E}_{1}^{0}=-1.82 \\
& 4 \mathrm{e}^{-}+5 \mathrm{H}^{+}+\mathrm{BrO}_{3}^{-} \quad \mathrm{HBrO}+2 \mathrm{H}_{2} \mathrm{O}-(2), \mathrm{E}_{2}^{0} \\
& =1.5 \mathrm{~V} \\
& \mathrm{H}^{+}+3 \mathrm{BrO}_{3}^{-} \rightarrow 2 \mathrm{BrO}_{4}^{-}+\mathrm{HBrO}-(3) \\
& \mathrm{E}_{3}^{0} \quad=\frac{-1.82 \times 4+1.5 \times 4}{4} \\
& \quad=-\mathrm{ve}
\end{aligned}
$$

Also for HBrO
$4 \mathrm{e}^{-}+6 \mathrm{H}^{+}+2 \mathrm{HBrO} \rightarrow 2 \mathrm{Br}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$-(1), \mathrm{E}_{1}^{0}=1.595$
$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{HBrO} \rightarrow \mathrm{BrO}_{3}^{-}+5 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
$-(2), \mathrm{E}_{2}^{0}=-1.5 \mathrm{~V}$
$(1)+(2)=3$
$\mathrm{H}^{+}+3 \mathrm{HBrO} \rightarrow 2 \mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{BrO}_{3}^{-}-(3)$

$$
\begin{aligned}
\therefore \quad \mathrm{E}_{3}^{0}= & \frac{1.595 \times 4-1.5 \times 4}{4} \\
& =+\mathrm{ve}
\end{aligned}
$$

So, $\quad \mathrm{HBrO}$ will disproportionate

Q 31. In which case is the number of molecules of water maximum?
Option A $\quad 0.00224 \mathrm{~L}$ of water vapours at 1 atm and 273 k
Option B $\quad 0.18 \mathrm{~g}$ of water
Option C 18 mL of water
Option D $\quad 10^{-3} \mathrm{~mol}$ of water

## Correct Option C

## Solution:

(1) No.of moles $=\frac{0.00224}{22.4}$

$$
=10^{-4} \mathrm{~mole}
$$

No. of molecules $=10^{-4} \times \mathrm{N}_{\mathrm{A}}$
(2) No.of moles $=\frac{0.18}{18}$

$$
=0.01 \mathrm{~mole}
$$

No.of molecules $=10^{-2} \times N_{A}$
(3) $\mathrm{d}_{\mathrm{H}_{2} 0=1 \mathrm{gm} / \mathrm{ml}}$
$\therefore \mathrm{w}=18 \mathrm{gm}$
No.of moles $=\frac{18}{18}$

$$
=1 \mathrm{~mole}
$$

No.of molecules $=1 \times N_{A}$
(4) $10^{-3}$ mole

$$
\text { No. of molecules }=10^{-3} \times \mathrm{N}_{\mathrm{A}}
$$

Also for HBrO
$4 \mathrm{e}^{-}+6 \mathrm{H}^{+}+2 \mathrm{HBrO} \rightarrow 2 \mathrm{Br}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
$-(1), \mathrm{E}_{1}^{0}=1.595$
$2 \mathrm{H}_{2} \mathrm{O}+\mathrm{HBrO} \rightarrow \mathrm{BrO}_{3}^{-}+5 \mathrm{H}^{+}+4 \mathrm{e}^{-}$
$-(2), \mathrm{E}_{2}^{0}=-1.5 \mathrm{~V}$
$(1)+(2)=3$
$\mathrm{H}^{+}+3 \mathrm{HBrO} \rightarrow 2 \mathrm{Br}_{2}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{BrO}_{3}^{-}-(3)$
$\therefore \quad \mathrm{E}_{3}^{0}=\frac{1.595 \times 4-1.5 \times 4}{4}$

$$
=+\mathrm{ve}
$$

So, HBrO will disproportionate

Q 32. Which of the following molecules represents the order of hybridization $\mathbf{s p}^{2}$, $\mathbf{s p}^{2}$, sp , sp from left to right atoms?
Option A $\quad \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
Option B $\quad \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
Option C $\quad \mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
Option D $\quad \mathrm{CH}_{3}-\mathrm{CH} \equiv \mathrm{CH}-\mathrm{CH}_{3}$

## Correct Option B

Solution: Carbon - carbon double bonds: $\mathrm{sp}^{2}$ hybridised carbon atoms
Carbon - carbon triple bonds: sp hybridized carbon atoms


Q 33. Which of the following carbocations is expected to be most stable?
Option A


Option B


Option C


Option D


## Correct Option A

## Solution:


is more stable as more number of resonating structures due less electron withdrawing group $-\mathrm{NO}_{2}$.

Q 34. Which of the following is correct with respect to -I effect of the substitutents? ( $\mathrm{R}=\mathrm{alkyl}$ )
Option A $\quad-\mathrm{NH}_{2}>-\mathrm{OR}>-\mathrm{F}$
Option B $\quad-\mathrm{NR}_{2}<-\mathrm{F}<-\mathrm{OR}$
Option C $\quad-\mathrm{NH}_{2}<-\mathrm{OR}<-\mathrm{F}$
Option D $\quad-\mathrm{NR}_{2}>-\mathrm{OR}>-\mathrm{F}$

## Correct Option C

Solution: The correct with respect to -I effect is $-\mathrm{NH}_{2}<\mathrm{OR}<-\mathrm{F}$
As the electronegativity increases -I effect also increases.
$-\mathrm{NR}_{2}<-\mathrm{OR}<-\mathrm{F}$ is also correct order.
$Q$ 35. Identify the major products $P, Q$ and $R$ in this following sequence of reactions:


Option A

 $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$

Option B




Option C


- $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

Option D



- $\mathrm{CH}_{3} \mathrm{COCH}_{3}$


## Correct Option D

Solution:


Q 36. Which of the following compounds can from a zwitterion?
Option A Benzoic acid
Option B Acetanilide
Option C Aniline
Option D Glycine
Correct Option D
Solution:


Glycine Zwitterion

Q 37. The compound A on treatment with Na gives $B$, and with $\mathrm{PCI}_{5}$ gives C . B and C react together to give diethyl ether. $A, B$ and $C$ are in the order:
Option A $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CI}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
Option B $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CI}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
Option C $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
Option D $\quad \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
Correct Option D

## Solution:


(A)
(B)

(C)

(B)

> (C)

Q 38. Hydrocarbon (A) react with bromine by substitution to from an alkyl bromine which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms (A) is:
Option A $\quad \mathrm{CH}_{3}-\mathrm{CH}_{3}$
Option B $\quad \mathrm{CH}_{2}=\mathrm{CH}_{2}$
Option C $\quad \mathrm{CH}_{\equiv} \mathrm{CH}$
Option D $\quad \mathrm{CH}_{4}$

## Correct Option D

Solution: $\mathrm{CH}_{4} \xrightarrow[\text { hv }]{\mathrm{Br}} \mathrm{CH}_{3}-\mathrm{Br} \xrightarrow[\text { ether }]{2 \mathrm{Na}} \mathrm{CH}_{3}-\mathrm{CH}_{3}$
(A)
(Less than 4 carbon)

Q 39. The compound $\mathrm{C}_{7} \mathrm{H}_{8}$ undergoes the following reactions:
$\mathrm{C}_{7} \mathrm{H}_{8} \xrightarrow{3 \mathrm{Cl}_{2} / \Delta} \mathrm{A} \xrightarrow{\mathrm{Br}_{2} / \mathrm{Fe}} \mathrm{B} \xrightarrow{\mathrm{Zn} / \mathrm{HCl}} \mathrm{C}$
The product ' C ' is:
Option A 3-bromo-2, 4, 6-trichlorotoluene
Option B o-bromotoluene
Option C m-bromotoluene
Option D p-bromotoluene

## Correct Option C

## Solution:



Q 40. Which oxide of nitrogen is not a common pollutant introduced into the atmosphere both due to natural and human activity?
Option A $\quad \mathrm{N}_{2} \mathrm{O}$
Option B $\quad \mathrm{NO}_{2}$
Option C $\quad \mathrm{N}_{2} \mathrm{O}_{5}$
Option D NO

## Correct Option C

Solution: $\mathrm{N}_{2} \mathrm{O}_{5}$
$\mathrm{NO}_{2}$ and NO are formed during the fuel combustion in automobile engines.
$\mathrm{N}_{2} \mathrm{O}$ occurs naturally in the atmosphere.

Q 41. Regarding cross-linked or network polymers, which of the following statements is incorrect?
Option A examples are bakelite and melamine.
Option B They are formed from bi- and tri- functional monomers.
Option C They contain covalent bonds between various liner polymer chains.
Option D They contain strong covalent bonds in their polymer chain.

## Correct Option D

Solution: Cross-linked or network polymers contain strong covalent bonds in their polymer chains. They are formed from bi-functional and tri-functional monomers.

Q 42. Which of the following oxides is most acidic in nature?
Option A BaO
Option B BeO
Option C MgO
Option D CaO

## Correct Option B

Solution: On moving down the group the atomic size increases and ionization energy decreases and elements become more basic. So the acidic strength decreases moving down the group.

Q 43. Nitration of aniline in strong acidic medium also gives $m$-nitro aniline because:
Option A In absence of substituents nitro group always goes to m-position.
Option B In electrophilic substitution reactions amino group is Meta directive.
Option C In spite of substituents nitro group always goes to only m-position.
Option D In acidic (strong) medium aniline is present as anilinium ion.

## Correct Option D

Solution: In acidic medium, aniline is protonated to form anilinium ion, which is Meta directing.


Therefore Meta product is formed.
Aniline
Anilinium ion

Q 44. A mixture of 2.3 g formic acid 4.5 g oxalic acid is treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. The evolved gaseous mixture is passed through KOH pellets. Weight (ing) of the remaining product at STP will be:
Option A 2.8
Option B $\quad 3.0$
Option C $\quad 1.4$
Option D 4.4

## Correct Option A

## Solution:

No. of moles of HCOOH are:
$\mathrm{n}=\frac{2.3}{46}$
$\mathrm{n}=0.05$ moles
No. of moles of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ are:
$\mathrm{n}=\frac{4.5}{90}$
$\mathrm{n}=0.05$ moles

|  | HCOOH | $\longrightarrow$ | $\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$ |
| :---: | :---: | :---: | :---: |
| Initial | 0.05 mol | 0 | 0 |
| Final | 0.05 mol | 0.05 mol |  |


|  | $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ | $\longrightarrow$ | CO |
| :---: | :---: | :---: | :---: |
| Initial | 0.05 mol | 0 | $\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}_{(1)}$ |
| Final | 0 | 0.05 mol | 0 |
| Ind |  |  |  |

$\mathrm{CO}_{2}$ is absorbed by KOH and the remaining product is CO .
Therefore total no. of moles of CO formed in both the reactions is,
$0.05+0.05=0.1$ mole
Mass of CO formed $=0.1 \times 28$

$$
=2.8 \mathrm{gm}
$$

## Q 45. The difference between amylose and amylopectin is;

Option A Amylopectin have $1 \rightarrow 4 \alpha$ linkage and $1 \rightarrow 6 \beta$-linkage
Option B Amylose have $1 \rightarrow 4 \alpha$ - linkage and $1 \rightarrow 6 \beta$-linkage
Option C Amylopectin have $1 \rightarrow 4 \alpha$-linkage and $1 \rightarrow 6 \alpha$-linkage
Option D Amylose is made up of glucose and galactose
Correct Option C
Solution: Amylose and amylopectin are polymers of $\alpha-\mathrm{D}$ glucose.
Amylose have linear $1 \rightarrow 4 \alpha$-linkage and amylopectin is branched and have $1 \rightarrow 4 \alpha$ - linkage and $1 \rightarrow 6 \alpha$-linkage

## General Instructions:

1. The test is of $\mathbf{3}$ hours duration.
2. The Test Paper contains $\mathbf{1 8 0}$ questions. There are three parts in the question paper consisting of Physics and Chemistry having 45 questions each and Biology with 90 questions.
3. Each question carries $\mathbf{4}$ marks. For each correct response, the candidate will get $\mathbf{4}$ marks. For each incorrect response, 1 mark will be deducted from the total scores. The maximum marks are 720.
4. Out of the four options given for each question, only one option is the correct answer. If more than one response is marked in any question, it will be treated as wrong response and marked up for wrong response will be deducted.
5. No deduction from the total score will be made if no response is indicated for an item in the answer box.
6. Use of Electronic/Manual Calculator is prohibited.

## PHYSICS

Q 1. The volume ( $V$ ) of a monatomic gas varies with its temperature ( $T$ ), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, when it undergoes a change from state $A$ to state $B$, is


Option A $\frac{1}{3}$
Option B $\frac{2}{3}$
Option C $\frac{2}{5}$
Option D $\frac{2}{7}$
Correct Option C

## Solution:

From the graph is clear that this is an isobaric process.
$\mathrm{P}=$ constant
At constant pressure
$\mathrm{W}=\mathrm{nR} \Delta \mathrm{T}$
$\Delta \mathrm{Q}=\mathrm{nC}_{\mathrm{p}} \Delta \mathrm{T}$ (for constant pressure)
$\Delta \mathrm{Q}=\mathrm{n}\left(\frac{5}{2} \mathrm{R}\right) \Delta \mathrm{T}$
Equation (1)/(2)
$\Rightarrow \frac{n R \Delta T}{n\left(\frac{5}{2} R\right) \Delta T} \Rightarrow \frac{2}{5}$

Q 2. The fundamental frequency in an open organ pipe is equal to the third harmonic of a closed organ pipe if the length of the closed organ pipe is $\mathbf{2 0} \mathbf{~ c m}$, the length of the open organ pipe is
Option A $\quad 12.5 \mathrm{~cm}$
Option B $\quad 8 \mathrm{~cm}$
Option C $\quad 13.2 \mathrm{~cm}$
Option D $\quad 16$ cm
Correct Option C
Solution:
For open organ pipe

$\ell=\frac{\lambda}{2}$
$\Rightarrow \lambda=2 \ell$
General formula $f=\frac{n v}{2 l}$
$\mathrm{f}_{\text {open }}=\frac{\mathrm{v}}{\lambda}=\frac{\mathrm{v}}{2 \ell}$
For pipe closed at one end


General formula $f=\frac{n v}{4 l}$
Fundamental $\mathrm{f}=\frac{\mathrm{v}}{4}$

As given:
$\frac{3 \mathrm{v}}{4 \mathrm{l}_{1}}=\frac{\mathrm{v}}{2 \mathrm{l}_{2}}=\frac{3}{4 \times 20}=\frac{1}{2 \mathrm{l}_{2}}$

$$
=13.2
$$

Q 3. The efficiency of an ideal heat engine working between the freezing point and boiling point of water, is
Option A 6.25\%
Option B 20\%
Option C 26.8\%
Option D 12.5\%

## Correct Option C

Solution: Efficiency of heat engine
$\mathrm{Q}_{1}=\mathrm{W}+\mathrm{Q}_{2}$
Efficiency $=\frac{\text { work done }}{\text { Energy available }}$
$\eta=\frac{Q_{1}-Q_{2}}{Q_{1}}$
$\mathrm{h}=1-\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}$
$=1-\frac{273}{373}$
$=1-0.731$
26.8\%

Q 4. At what temperature will the rms speed of oxygen molecules become just sufficient for escape from the Earth's atmosphere? (Given: Mass of oxygen molecule ( m ) $=\mathbf{2 . 7 6 \times 1 0 ^ { - 2 6 }} \mathbf{k g}$
Option A $\quad 5.016 \times 10^{4} \mathrm{~K}$
Option B $\quad 8.360 \times 10^{4} \mathrm{~K}$
Option C $\quad 2.508 \times 10^{4} \mathrm{~K}$
Option D $\quad 1.254 \times 10^{4} \mathrm{~K}$

## Correct Option B

Solution:
Escape velocity $=11.2 \mathrm{~km} / \mathrm{s}=11200 \mathrm{~m} / \mathrm{s}$
$V_{r m s}=\sqrt{\frac{3 R T}{M_{0}}}$
$\sqrt{\frac{30 \times 1.38 \times 10^{-23} \times \mathrm{T}}{2.76 \times 10^{-26}}}=\left(11.2 \times 10^{-3}\right)^{2}$
$\mathrm{T}=8.360 \times 10^{4}$

Q 5. Unpolarised light is incident from air on a plane surface of a material of refractive index ' $\mu$ '. At a particular angle of incidence ' $i$ ', it is found that the reflected and refracted rays are perpendicular to each other, which of the following options is correct for this situation?
Option A $\quad i=\sin ^{-1}\left(\frac{1}{\mu}\right)$
Option B Reflected light is polarised with its electric vector perpendicular to the plane of incidence
Option C Reflected light is polarised with its electric vector parallel to the plane of incidence
Option D $\quad i=\tan ^{-1}\left(\frac{1}{\mu}\right)$

## Correct Option B

## Solution:



This is the condition of polarisation in which light is incident on an interface at Brewster's angle.
Thus reflected light is polarised with its $\bar{E}$ perpendicular to the plane of incidence.
Q 6. In Young's double slit experiment the separation d between the slits is 2 mm , the wavelength $\lambda$ of the light used is $5896 \AA$ and distance $D$ between the screen and slits is 100 $\mathbf{c m}$. It is found that the angular width of the fringes is $0.20^{\circ}$. To increase the fringe angular width to $0.21^{\circ}$ (with same $\lambda$ and $D$ ) the separation between the slits needs to be changed to
Option A $\quad 2.1 \mathrm{~mm}$
Option B $\quad 1.9 \mathrm{~mm}$
Option C $\quad 1.8 \mathrm{~mm}$
Option D $\quad 1.7 \mathrm{~mm}$

## Correct Option B

Solution:
Angular width $\omega=\frac{\lambda}{d}$
$\omega=\frac{\lambda}{d}$
For new seperation
$\omega^{\prime}=\frac{\lambda}{d^{\prime}}$
$\therefore \frac{0.20}{0.21}=\frac{\mathrm{d}^{\prime}}{\mathrm{d}}$
$\Rightarrow \frac{0.20}{0.21}=\frac{\mathrm{d}^{\prime}}{2}$
$\Rightarrow \mathrm{d}^{\prime}=1.904$

Q 7. An astronomical refracting telescope will have large angular magnification and high angular resolution, when it has an objective lens of
Option A large focal length and large diameter
Option B large focal length and small diameter
Option C small focal length and large diameter
Option D small focal length and small diameter

## Correct Option A

## Solution:

R. $\mathrm{P} \propto \mathrm{d}$
angular magnification $=\frac{f_{0}}{f_{e}}$
And
Resolving power $=\frac{\text { Aperture of objective }}{\text { wavelength }}$
$\therefore$ Greater the focal length of the objective, more is the magnification.
Also for a telescope to have high resolution the aperture of objective lens should be large.
Q 8. The kinetic energies of a planet in an elliptical orbit about the Sun, at positions $A, B$ and $C$ are $K_{A}, K_{B}$ and $K_{C}$, respectively. AC is the major axis and $S B$ is perpendicular to $A C$ at the position of the Sun $S$ as shown in the figure. Then


Option A $\quad K_{B}<K_{A}<K_{C}$
Option B $\quad K_{A}>K_{B}>K_{C}$
Option C $\quad K_{A}<K_{B}<K_{C}$
Option D $\quad K_{B}>K_{A}>K_{C}$
Correct Option B
Solution: We know that angular momentum remains conserved In motion of a planet around the sun $m(\vec{r} \times \vec{v})=$ constant
The nearest point in perigee which is point $A$. Next nearest is $B$ and then $C$
Therefore
$\mathrm{V}_{A}>V_{B}>V_{C}$
$\Rightarrow K_{A}>K_{B}>K_{C}$

Q 9. A solid sphere is in rolling motion. In rolling motion a body possesses translational kinetic energy ( $K_{t}$ ) as well as rotational kinetic energy ( $K_{r}$ ) simultaneously. The ratio $K_{t}$ : ( $K_{t}+$ $K_{r}$ ) for the sphere is
Option A 10:7
Option B $\quad$ 5:7
Option C $\quad 7: 10$
Option D 2:5
Correct Option B

## Solution:

moment of inertia for solid sphere
$I_{\text {solid sphere }}=\frac{2}{5} M R^{2}$
$\mathrm{KE}_{\mathrm{T}}=\frac{1}{2} \mathrm{~m}(\mathrm{r} \omega)^{2}=\frac{1}{2} \mathrm{mr}^{2} \omega^{2}$
$\mathrm{KE}_{(\mathrm{R}+\mathrm{T})}=\frac{1}{2} \frac{2}{5} \mathrm{mR}^{2} \omega^{2}+\frac{1}{2} \mathrm{~m}(\mathrm{r} \omega)^{2}$
$\mathrm{KE}_{\mathrm{R}}+\mathrm{KE}_{\mathrm{T}}=\frac{1}{5} \mathrm{mR}^{2} \omega^{2}+\frac{1}{2} \mathrm{mR}^{2} \omega^{2}$
$=\frac{7}{10} \mathrm{mR}^{2} \omega^{2}$
$\frac{\mathrm{K}_{\mathrm{T}}}{\mathrm{K}_{\mathrm{T}}+\mathrm{K}_{\mathrm{R}}}=\frac{\frac{1}{2} \mathrm{mr}^{2} \omega^{2}}{\frac{7}{10} \mathrm{mr}^{2} \omega^{2}}$
$=\frac{5}{7}$

Q 10. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten times larger in magnitude, which of the following is not correct?
Option A Time period of a simple pendulum on the Earth would decrease.
Option B Walking on the ground would become more difficult.
Option C Raindrops will fall faster.
Option D 'g' on the Earth will not change.
Correct Option D
Solution:
$\mathrm{g}=\frac{\mathrm{GM}_{\mathrm{e}}}{\mathrm{R}_{\mathrm{e}}{ }^{2}}$
$g_{\text {new }}=\frac{10 \mathrm{GMe}}{\mathrm{R}_{\mathrm{e}}^{2}}=10 \mathrm{~g}$
$\therefore \mathrm{g}$ changes
Therefore option d is not correct

Q 11. A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?
Option A Rotational kinetic energy
Option B Moment of inertia
Option C Angular velocity
Option D Angular momentum
Correct Option D
Solution: As we see that the torque acting on the body is zero, thus we can say that angular momentum is conserved.

$$
\begin{aligned}
& \tau_{\text {ext }}=0 \\
& \frac{d \vec{L}}{d t}=\text { cons } \tan t
\end{aligned}
$$

$Q$ 12. A metallic rod of mass per unit length $0.5 \mathrm{~kg} \mathrm{~m}^{-1}$ is lying horizontally on a smooth inclined plane which makes an angle of $30^{\circ}$ with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep it stationary is
Option A $\quad 14.76$ A
Option B $\quad 5.98$ A
Option C $\quad 7.14$ A
Option D 11.32 A

## Correct Option D

Solution: ilB $\cos 30^{\circ}=m g \sin 30^{\circ}$
$i=\frac{\mathrm{mg} \tan 30^{\circ}}{l B}$
$i=\frac{0.5 \times 9.8}{0.25 \times \sqrt{3}}$
$\mathrm{i}=11.32 \mathrm{~A}$
$Q$ 13. An inductor 20 mH , capacitor $100 \mu \mathrm{~F}$ and a resistor $50 \Omega$ are connected in series across a source of emf, $V=10 \sin 314 t$. The power loss in the circuit is
Option A $\quad 2.74$ W
Option B $\quad 0.43 \mathrm{~W}$
Option C $\quad 0.79 \mathrm{~W}$
Option D 1.13 W

## Correct Option C

Solution: $\omega=314$
$=100 \Omega$
Inductive reactance
$\mathrm{X}_{\mathrm{L}}=\omega \mathrm{L}$
$=100 \pi \times 20 \times 10^{-3}$
$\mathrm{X}_{\mathrm{L}}=2 \pi$

Capacitive reactance $X_{c}=\frac{1}{\omega \mathrm{C}}$
$=\frac{1}{100 \pi \times 100 \times 10^{-6}}$
$=\frac{100}{\pi}$
$=\sqrt{\mathrm{R}^{2}+\left(\mathrm{X}_{\mathrm{L}}-\mathrm{X}_{\mathrm{c}}\right)^{2}}$
$=\sqrt{(50)^{2}+\left(2 \pi-\frac{100}{\pi}\right)^{2}}$
$=\sqrt{(50)^{2}+(25.56)^{2}}$
$=\sqrt{3153.31}$
$\mathrm{p}=\mathrm{V}_{\text {rms }} \mathrm{I}_{\text {rms }} \cos \phi$
$=\frac{\mathrm{Vrms}^{2} \mathrm{R}}{\mathrm{z}^{2}}$
$=\left(\frac{10}{\sqrt{2}}\right)^{2} \times 50$
$\mathrm{p}=\frac{\left(\frac{10}{\sqrt{2}}\right)^{2} \times 50}{3153.31}$
$\mathrm{p}=0.79$ watt

Q 14. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from
Option A the lattice structure of the material of the rod
Option B the magnetic field
Option C the current source
Option D the induced electric field due to the changing magnetic field

## Correct Option C

## Solution:

Energy due to current source is responsible.
Q 15. Current sensitivity of a moving coil galvanometer is $5 \mathrm{div} / \mathrm{mA}$ and its voltage sensitivity (angular deflection per unit voltage applied) is $20 \mathrm{div} / \mathrm{V}$. The resistance of the galvanometer is
Option A $\quad 250 \Omega$
Option B $\quad 25 \Omega$
Option C $\quad 40 \Omega$
Option D $\quad 500 \Omega$
Correct Option A

## Solution:

$5 \mathrm{div} \rightarrow 1 \mathrm{~mA}$
$20 \mathrm{div} \rightarrow 4 \mathrm{~mA}$
$\mathrm{V}=\mathrm{iR}$
$\mathrm{I}=4 \times 10^{-3} \times \mathrm{R}$
$\mathrm{R}=\frac{1}{4 \times 10^{-3}}$
$=\frac{1000}{4}$
$=250 \Omega$
$Q$ 16. In the circuit shown in the figure, the input voltage $V_{i}$ is $20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0$ and $\mathrm{V}_{\mathrm{CE}}=0$. The values of $I_{B}, I_{C}$ and $\boldsymbol{\beta}$ are given by


Option A $\quad \mathrm{I}_{\mathrm{B}}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \beta=250$
Option B $\quad \mathrm{I}_{\mathrm{B}}=25 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \beta=200$
Option C $\quad \mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \beta=250$
Option D $\quad I_{B}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \beta=125$

## Correct Option D

## Solution:



$$
\begin{aligned}
& \mathrm{I}_{\mathrm{B}}=\frac{20}{500 \times 10^{3}}=\frac{20}{5 \times 10^{4}} \\
& =4 \times 10^{-5} \\
& =40 \mu \mathrm{~A}
\end{aligned}
$$

$\mathrm{I}_{\mathrm{c}}=\frac{20}{4 \times 10^{3}}=5 \mathrm{~mA}$
$\therefore \beta=125$

Q 17. In a p-n junction diode, change in temperature due to heating
Option A does not affect resistance of p-n junction
Option B affects only forward resistance
Option C affects only reverse resistance
Option D affects the overall V-I characteristics of p-n junction.

## Correct Option D

Solution: on increasing the temperature
The resistances falls.
Current increases in both cases. The overall V-I characteristics of a p-n junction changes.
$Q$ 18. In the combination of the following gates the output $Y$ can be written in terms of inputs $A$ and $B$ as


Option A $\quad \overline{\mathrm{A} . \mathrm{B}}+\mathrm{A} . \mathrm{B}$
Option B $\quad$ A. $\bar{B}+\bar{A} . B$
Option C $\overline{\text { A.B }}$
Option D $\quad \overline{\mathrm{A}+\mathrm{B}}$
Correct Option B

## Solution:



A B Y
$0 \quad 0 \quad 0$
$\begin{array}{lll}0 & 1 & 1\end{array}$
$\begin{array}{lll}1 & 0 & 1\end{array}$
110
X - OR gate

Q 19. A carbon resistor of $(47 \pm 4.7) \mathrm{k} \Omega$ is to be marked with rings of different colours for its identification. The colour code sequence will be
Option A Yellow-Green - Violet-Gold
Option B Yellow-Violet-Orange-Silver
Option C Violet-Yellow-Orange-Silver
Option D Green-Orange -Violet-Gold
Correct Option B
Solution:
$\mathrm{R}=(47 \pm 4.7) \mathrm{K} \Omega$
$=47 \times 10^{3} \pm 4700$
$\mathrm{R}=47 \times 10^{3} \pm 10 \%$
B B R OYGBVGWGS
0123456789

Q 20. A set of ' $n$ ' equal resistors, of value ' $R$ ' each, are connected in series to a battery of emf ' $E$ ' and internal resistance ' $R$ '. The current drawn is I. Now, the ' $n$ ' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I . The value of ' n ' is
Option A 20
Option B 11
Option C 10
Option D $\quad 9$
Correct Option C
Solution:
$I=\frac{E}{E+n R}$
Where parallel combination current 10 I is given by
$\frac{E}{R}+\frac{R}{n}=10$ I
$\frac{\mathrm{E}}{\mathrm{R}}+\frac{\mathrm{R}}{\mathrm{n}}=10\left(\frac{\mathrm{E}}{\mathrm{R}}+\mathrm{nR}\right)$
How according to problem
$1+n / 1+1 / n=10$
$10=(1+n / n+1) n$
$\mathrm{n}=10$

Q 21. A battery consists of a variable number ' $n$ ' of identical cells (having internal resistance ' $r$ ' each) which are connected in series. The terminals of the battery are short-circuited and the current $I$ is measured. Which of the graphs shows the correct relationship between $I$ and n?
Option A


Option B


Option C


Option D


## Correct Option C

Solution: I is independent of the no. of batteries as the terminals of the battery are short circuited.


Q 22. A body initially at rest and sliding along a frictionless track from a height $h$ (as shown in the figure) just completes a vertical circle of diameter $A B=D$. The height $h$ is equal to
Option A $\quad \frac{7}{5}$ D
Option B D
Option C $\quad \frac{3}{2} D$
Option D $\frac{5}{4} D$

## Correct Option D

## Solution:


$\frac{1}{2} \mathrm{mv}^{2}=\mathrm{mgh}$
$\mathrm{v}=\sqrt{2 \mathrm{gh}}$
$\frac{1}{2} \mathrm{~m}(\sqrt{2 g h})^{2}=\frac{1}{2} \mathrm{mg} \frac{\mathrm{D}}{2}+\mathrm{MgD}$
$\mathrm{h}=\frac{\mathrm{D}}{4}+\mathrm{D}$
$h=\frac{5 D}{4}$

Q 23. Three objects, A: (a solid sphere), B: (a thin circular disk) and C: (a circular ring), each have the same mass $M$ and radius $R$. They all spin with the same angular speed $\omega$ about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation.

| Option A | $\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{C}}$ |
| :--- | :--- |
| Option B | $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{C}}$ |
| Option C | $\mathrm{W}_{\mathrm{C}}>\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}$ |
| Option D | $\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{C}}>\mathrm{W}_{\mathrm{B}}$ |

## Correct Option C

## Solution:

A - Solid sphere
B - Thin circular disc
C - Circular ring
As all are rotating about their own symmetry axis, they have rotational KE
$\mathrm{I}_{\mathrm{ss}}=\frac{2}{5} \mathrm{MR}^{2}$
$\mathrm{I}_{\text {dis }}=\frac{\mathrm{MR}^{2}}{2}$
$\mathrm{I}_{\text {ring }}=\mathrm{MR}^{2}$
$\therefore \mathrm{I}_{\mathrm{R}}>\mathrm{I}_{\text {Dis }}>\mathrm{I}_{\mathrm{ss}}$
$\mathrm{W}_{\mathrm{C}}>\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}$

Q 24. Which one of the following statements is incorrect?
Option A Friction force opposes the relative motion
Option B Limiting value of static friction is directly proportional to normal reaction
Option C Rolling friction is smaller than sliding friction.
Option D Coefficient of sliding friction has dimensions of length.

## Correct Option D

Solution: Coefficient of sliding friction has dimensions of length.
Q 25. A moving block having mass $m$, collides with another stationary block having mass 4 m . The lighter block comes to rest after collision. When the initial velocity of the lighter block is v , then the value of coefficient of restitution ( e ) will be Option A 0.8
Option B 0.25
Option C $\quad 0.5$
Option D 0.4

## Correct Option B

## Solution:

Before:

m

4m

After:
Rest

| $\mathrm{P}_{\mathrm{i}}=\mathrm{P}_{\mathrm{t}}$ |
| :--- |
| $\mathrm{mv}+4 \mathrm{~m} \times 0=4 \mathrm{mv}+\mathrm{m} \times 0$ |
| $\Rightarrow \mathrm{mv}=4 \mathrm{mv}^{\prime}$ |

$\Rightarrow \mathrm{v}^{\prime}=\frac{\mathrm{v}}{4}$
$\mathrm{e}=\frac{\mathrm{v}_{2}-\mathrm{v}_{1}}{\mathrm{u}_{1}-\mathrm{u}_{2}} \Rightarrow \mathrm{ev}=\frac{\mathrm{v}}{4}$
$\Rightarrow \mathrm{e}=\frac{1}{4}=0.25$

m
$P_{i}=P_{t}$
$\mathrm{mv}+4 \mathrm{~m} \times 0=4 \mathrm{mv}^{\prime}+\mathrm{m} \times 0$
$\Rightarrow \mathrm{mv}=4 \mathrm{mv}^{\prime}$
$\Rightarrow \mathrm{v}^{\prime}=\frac{\mathrm{v}}{4}$
$\mathrm{e}=\frac{\mathrm{v}_{2}-\mathrm{v}_{1}}{\mathrm{u}_{1}-\mathrm{u}_{2}} \Rightarrow \mathrm{ev}=\frac{\mathrm{v}}{4}$
$\Rightarrow \mathrm{e}=\frac{1}{4}=0.25$

Q 26. A tuning fork is used to produce resonance in a glass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of $27^{\circ} \mathrm{C}$ two successive resonances are produced at 20 cm and 73 cm of column length. If the frequency of the tuning fork is 320 Hz , the velocity of sound in air at $27^{\circ} \mathrm{C}$ is
Option A $\quad 350 \mathrm{~m} / \mathrm{s}$
Option B $\quad 339 \mathrm{~m} / \mathrm{s}$
Option C $\quad 330 \mathrm{~m} / \mathrm{s}$
Option D $\quad 300 \mathrm{~m} / \mathrm{s}$

## Correct Option B

Solution:

$53=\lambda / 2$
$f=\frac{v}{\lambda}$
$320=\frac{\mathrm{v}}{106 \times 10^{-2}}$
$\mathrm{v}=339 \mathrm{~m} / \mathrm{s}$

Q 27. The electrostatic force between the metal plates of an isolated parallel plate capacitor $C$ having a charge $Q$ and area $A$ is
Option A proportional to the square root of the distance between the plates.
Option B linearly proportional to the distance between the plates.
Option C independent of the distance between the plates.
Option D inversely proportional to the distance between the plates.

## Correct Option C

## Solution:

$$
\mathrm{F}=\frac{\mathrm{Q}^{2}}{2 \mathrm{~A} \varepsilon_{0}}
$$

$\therefore$ the force F is independent of the distance between the plates.

Q 28. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and fro like a simple harmonic oscillator. The acceleration of the bob of the pendulum is 20 $\mathrm{m} / \mathbf{s}^{2}$ at a distance of 5 m from the mean position. The time period of oscillation is
Option A 2 s
Option B $\quad \pi \mathrm{s}$
Option C $2 \pi s$
Option D 1 s
Correct Option B

## Solution:

$a=-\omega^{2} x$
taking magnitude only
$20=\omega^{2} 5$
$\omega=2 \mathrm{rad} / \mathrm{sec}$
time period of oscillation
$\mathrm{T}=\frac{2 \pi}{\omega}=\frac{2 \pi}{2}=\pi \mathrm{sec}$

Q 29. An electron falls from rest through a vertical distance $h$ in a uniform and vertically upward directed electric field $E$. The direction of electric field is now reversed, keeping its magnitude the same. A proton is allowed to fall from rest in it through the same vertical distance $h$. The time of fall of the electron, in comparison to the time of fall of the proton is.
Option A 10 times greater
Option B 5 times greater
Option C Smaller
Option D equal
Correct Option C
Solution:
S=ut $+\frac{1}{2} \mathrm{at}^{2}$
$\mathrm{h}=\frac{\mathrm{eE}}{2 \mathrm{~m}_{\mathrm{e}}} \mathrm{t}^{2}$
As a result
$\operatorname{tam}^{\frac{1}{2}} \quad \mathbf{h}$

But the $\mathrm{m}_{\mathrm{e}}<\mathrm{m}_{\mathrm{p}}$
Therfore
$\mathrm{t}_{\mathrm{e}}<\mathrm{t}_{\mathrm{p}}$

Q 30. An electron of mass $m$ with aninitial velocity $\overrightarrow{\mathbf{V}}=\mathbf{V}_{\mathbf{0}} \hat{\mathbf{i}}\left(\mathrm{V}_{\mathbf{0}}>0\right)$ enters an electric fie $\overrightarrow{\mathbf{E}}=-\mathrm{E}_{0} \hat{\mathbf{i}}\left(\mathrm{E}_{0}=\right.$ constant $\left.>0\right)$ at $\mathrm{t}=0$. If $\lambda_{0}$ its de-Broglie wavelength initially, then de- Broglie wavelength initially, then de-Broglie wavelength at time is
Option A $\lambda_{0} t$
Option B $\quad \lambda_{0}\left(1+\frac{\mathrm{eE}_{0}}{\mathrm{mV}} \mathrm{t}\right)$
Option C

$$
\left.\frac{\lambda_{0}}{\left(1+\frac{\mathrm{eE}_{0}}{\mathrm{mV}} \mathrm{t}\right.} \mathrm{t}\right)
$$

Option D
$\lambda_{0}$
Correct Option C

## Solution:

$\overrightarrow{\mathrm{v}}=\mathrm{v}_{0} \hat{\mathrm{i}}, \overrightarrow{\mathrm{E}}=-\mathrm{E}_{0} \hat{\mathrm{j}}$
$v=v_{0}+\frac{E_{0} \text { et }}{m}$
$\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$
$\lambda=\frac{h}{m\left(v_{0}+\frac{E_{0} \text { et }}{m}\right)}$
$\lambda=\frac{h}{\operatorname{mv}_{0}\left(1+\frac{\mathrm{E}_{0} \mathrm{et}}{\mathrm{mv}}\right)}$
$\lambda=\frac{\lambda_{0}}{1+\left(\frac{\mathrm{eE}_{0}}{\mathrm{mv}_{0}}\right) \mathrm{t}} \quad\left(\lambda_{0}=\frac{\mathrm{h}}{\mathrm{mv}_{0}}\right)$

Q 31. For a radioactive material, half -life 10 minutes. If initially there are $\mathbf{6 0 0}$ number nuclei, the time taken (in minutes) for the disintegration of $\mathbf{4 5 0}$ nuclei is
Option A 30
Option B 10
Option C 20
Option D 15
Correct Option C
Solution:
$\mathrm{N}_{0}=600$
$\mathrm{N}_{0} \xrightarrow[\frac{\mathrm{~T}_{1}}{2}]{ } \frac{\mathrm{N}_{0}}{2} \xrightarrow[\frac{\mathrm{~T}_{1}}{2}]{ } \frac{\mathrm{N}_{0}}{4}$
$600 \rightarrow 300 \rightarrow 150$

450 nuclie disintegration in $2 t_{1 / 2}$ life
$N=\frac{N_{0}}{2^{n}}$
$150=\frac{600}{2^{n}}$
$2^{n}=4$
$n=2$
$\frac{T}{t_{1} / 2}=2$
$T=2 \times 10=20 \mathrm{~min}$

Q 32. When the light of frequency $2 v_{0}$ (where $v_{0}$ threshold frequency), is incident on metal plate, the maximum velocity of electrons emitted is $v_{1}$. When the frequency of the incident radiation is increased to $5 v_{0}$, the maximum velocity of electrons emitted from the same plate is $v_{2}$. The ratio of $v_{1}$ to $v_{2}$ is
Option A $4: 1$
Option B $1: 4$
Option C $1: 2$
Option D 2:1
Correct Option C
Solution:
$\mathrm{KE}_{\text {max }}=$ E nergy- Work function
$\frac{1}{2} \mathrm{mv}_{1}^{2}=\mathrm{h}\left(2 \mathrm{v}_{0}-\mathrm{v}_{0}\right)$
$\frac{1}{2} \mathrm{mv}_{1}^{2}=\mathrm{h} v_{0}$
$\frac{1}{2} \mathrm{mv}_{2}^{2}=\mathrm{h}\left(5 \mathrm{v}_{0}-\mathrm{v}_{0}\right)$
$\frac{1}{2} \mathrm{mv}_{2}^{2}=4 \mathrm{~h} v_{0}$
Dividing (1) by (2)
$\frac{\frac{1}{2} \mathrm{mv}_{1}^{2}}{\frac{1}{2} \mathrm{mv}_{2}^{2}}=\frac{\mathrm{h} v_{0}}{4 \mathrm{~h} v_{0}}$
$\frac{\mathrm{v}_{1}^{2}}{\mathrm{v}_{2}^{2}}=\frac{1}{4} \Rightarrow \frac{\mathrm{~V}_{1}}{\mathrm{~V}_{2}}=\sqrt{\frac{1}{4}}$
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{1}{2}$

Q 33. The ratio of kinetic energy to the total energy an electron in a Bohr orbit of the hydrogen atomic is
Option A $\quad 2:-1$
Option B $\quad 1:-1$
Option C $\quad 1: 1$
Option D 1:-2
Correct Option B

## Solution:

Kinetic Energy $=\frac{13.6 z^{2}}{n^{2}}$
Total Energy $=-13.6 \frac{\mathrm{z}^{2}}{\mathrm{n}^{2}}$
$\mathrm{TE}=-\mathrm{KE}$
$\therefore \frac{\mathrm{KE}}{\mathrm{TE}}=1:-1$
Q 34. An em wave is propagating in a medium with a velocity $\overrightarrow{\mathbf{V}}=V \hat{i}$. The instantaneous oscillating electric field of this em wave is along +y axis. Then the direction of oscillating magnetic field of the em wave will be along.
Option A -y direction
Option B +z direction
Option C -z direction
Option D -x direction
Correct Option B

## Solution:

$\overrightarrow{\mathrm{S}}=\overrightarrow{\mathrm{E}} \times \overrightarrow{\mathrm{B}}$
The direction of propagation of EM wave is towards positive x -axis (i) and $\hat{E}$ is given in positive direction of $y$ axis direction $(\hat{\mathrm{j}})$. So by using right hand thumb rule we can say that the direction of $B$ is along positive direction of Z- axis .

Q 35. The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is $30^{\circ}$. One of the two refracting surfaces of the prism is made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is -
Option A $\quad 30^{\circ}$
Option B $\quad 45^{\circ}$
Option C $\quad 60^{\circ}$
Option D zero

## Correct Option B

Solution:


To retrace its path the ray should incident mormally on the silvered surface.
$\mathrm{r}_{2}=0$
$\mathrm{r}_{1}=\mathrm{A}$

On applying snell's law
$1 \times \sin i=n \sin A$
$\operatorname{Sin} \mathrm{i}=\sqrt{2} \sin 30^{\circ}$
$i=45^{\circ}$
Here e =0
(No emergence)
Q 36. The magnetic potential energy stored in a certain inductor is 25 mJ , when the current in the inductor is $\mathbf{6 0} \mathbf{~ m A}$. This inductor is of inductance
Option A $\quad 1.389 \mathrm{H}$
Option B $\quad 138.88$ H
Option C $\quad 0.138 \mathrm{H}$
Option D $\quad 13.89$ H

## Correct Option D

## Solution:

$\frac{1}{2} \mathrm{LI}^{2}=25 \times 10^{-3}$
$\mathrm{L}=\frac{2 \times 25 \times 10^{-3}}{\left(60 \times 10^{-3}\right)^{2}}$
$=\frac{50 \times 10^{-3}}{36 \times 10^{-4}}$
$=1.389 \times 10$
$=13.89 \mathrm{H}$

Q 37. An object is placed at a distance of 40 cm from a concave mirror of focal length $15 \mathbf{~ c m}$. If the object is displaced through a distance of $\mathbf{2 0} \mathbf{~ c m}$ towards the mirror, the displacement of the image will be
Option A $\quad 30 \mathrm{~cm}$ towards the mirror
Option B $\quad 36 \mathrm{~cm}$ away from the mirror
Option C $\quad 30 \mathrm{~cm}$ away from the mirror
Option D $\quad 36 \mathrm{~cm}$ towards the mirror
Correct Option B
Solution:


Initial position of the image
$\frac{1}{\mathrm{v}_{1}}+\frac{1}{\mathrm{u}}=\frac{1}{\mathrm{f}} \Rightarrow \frac{1}{\mathrm{v}_{1}}-\frac{1}{40}=-\frac{1}{15}$
$\frac{1}{\mathrm{v}_{1}}=\frac{1}{40}-\frac{1}{15}$
$\frac{1}{\mathrm{v}_{1}}=\frac{15-40}{600}$
$\mathrm{v}_{1}=-\frac{600}{25} \Rightarrow-24 \mathrm{~cm}$
Final position of the image after the object is displaced by 20 cm towards the mirror.
$\frac{1}{v_{2}}+\frac{1}{u}=\frac{1}{f}$
$\Rightarrow \frac{1}{\mathrm{v}_{2}}-\frac{1}{20}=-\frac{1}{15}$
$\frac{1}{\mathrm{v}_{2}}=\frac{1}{20}-\frac{1}{15}$
$\frac{1}{\mathrm{v}_{2}}=\frac{15-20}{300}$
$\mathrm{v}_{2}=\frac{300}{-5} \Rightarrow-60 \mathrm{~cm}$
Displacement of image $=60-24$
$=36 \mathrm{~cm}$
Q 38. A toy car with charge $q$ moves on a frictionless horizontal plane surface under the influence of a uniform electric field $\vec{E}$. Due to the force $q \vec{E}$, its velocity increases from 0 to 6 $\mathrm{m} / \mathrm{s}$ in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this field. The average velocity and the average speed of the toy car between 0 to $\mathbf{3}$ seconds are respectively
Option A $\quad 1 \mathrm{~m} / \mathrm{s}, 3.5 \mathrm{~m} / \mathrm{s}$
Option B $\quad 1 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}$
Option C $\quad 2 \mathrm{~m} / \mathrm{s}, 4 \mathrm{~m} / \mathrm{s}$
Option D $\quad 1.5 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}$

## Correct Option B

Solution:

$\mathrm{t}=0, \mathrm{v}=0$ and $\mathrm{t}=1, \mathrm{v}=6$
$6=0+\mathrm{at}$
$\mathrm{a}=6$
Displacement for 1 st second
$\mathrm{x}=\frac{1}{2} \times 6(1)^{2}$
$=3$

Displacement for $2^{\text {nd }}$ second
$S=6 \times 1-\frac{1}{2} \times 6 \times 1^{2}=3$
After 2 second the car will stop and starts moving backward
$\mathrm{V}=\mathrm{u}+\mathrm{at}$
$0=6-6 \mathrm{t}$
$\mathrm{t}=1$ second
Displacement for 3rd second
$\mathrm{S}=0-\frac{1}{2} \times 6 \times 1^{2}=-3$
Total displacement $=3+3-3=3 \mathrm{~m}$
Total distance $=3+3+3=9 \mathrm{~m}$
$\left|\overrightarrow{\mathrm{v}}_{\text {avg }}\right|=\frac{3}{3}=1 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}_{\text {avg }}=\frac{9}{3}=3 \mathrm{~m} / \mathrm{s}$

Q 39. A block of mass $m$ is placed on a smooth inclined wedge ABC of inclination $\theta$ as shown in the figure. The wedge is given an acceelration 'a' towards the right. The relation between a and $\theta$ for the block to remain stationary on the wedge is -


Option A $\quad \mathrm{a}=\mathrm{g} \cos \theta$
Option B $\quad \mathrm{a}=\frac{\mathrm{g}}{\sin \theta}$
Option C $\quad a=\frac{g}{\operatorname{cosec} \theta}$
Option D $\quad a=g \tan \theta$

## Correct Option D

## Solution:




The component of forces along the inclined plane should be balanced
$\therefore \mathrm{ma} \cos \theta=\mathrm{mgsin} \theta$
$\Rightarrow a=g \tan \theta$

Q 40. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm . The main scale reading is 5 mm and 0 of circular scale division coincides with $\mathbf{2 5}$ divisions above the reference level. If screw gauge has a zero error of $\mathbf{- 0 . 0 0 4} \mathbf{~ c m}$, the correct diameter of the ball is -
Option A $\quad 0.053 \mathrm{~cm}$
Option B $\quad 0.525 \mathrm{~cm}$
Option C 0.521
Option D $\quad 0.529 \mathrm{~cm}$

## Correct Option D

Solution:
$\mathrm{LC}=0.001 \mathrm{~cm}$
Main scale reading $=5 \mathrm{~mm}$
Zero error $=-0.004$
CSR (least count) $=0.025 \mathrm{~cm}$
$\mathrm{D}=0.5+0.025+0.004$
$=0.529 \mathrm{~cm}$

Q 41. The moment of the force $\overline{\mathbf{F}}=4 \hat{\mathbf{i}}+5 \hat{\mathbf{j}}-6 \hat{\mathbf{k}}$ at $(2,0,-3)$, about the point $(2,-2,-2)$, is given by
Option A $\quad-7 \hat{i}-8 \hat{j}-4 \hat{k}$
Option B $\quad-4 \hat{i}-\hat{j}-8 \hat{k}$
Option C $\quad-8 \hat{\mathbf{i}}-4 \hat{\mathrm{j}}-7 \hat{\mathrm{k}}$
Option D
$-7 \hat{i}-4 \hat{j}-8 \hat{k}$

## Correct Option D

## Solution:


$\tau=\overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{F}}$
$\overrightarrow{\mathrm{r}}=\overrightarrow{\mathrm{r}}-\overrightarrow{\mathrm{r}_{0}}$
$\overrightarrow{\mathrm{r}}=(2 \mathrm{i}+0 \mathrm{j}-3 \mathrm{k})-(2 \mathrm{i}-2 \mathrm{j}-2 \mathrm{k})$
$\overrightarrow{\mathrm{r}}=2 \mathrm{j}-\mathrm{k}$
$=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 0 & 2 & -1 \\ 4 & 5 & -6\end{array}\right|$
$\mathrm{i}(-12+5)-\hat{\mathrm{j}}(+4)+\hat{\mathrm{k}}(8)$
$\Delta \overrightarrow{\mathrm{r}}=(2-2) \hat{\mathrm{i}}+(0+2) \hat{\mathrm{j}}+(-3+2) \hat{\mathrm{k}}$
$=-7 \hat{i}-4 \hat{j}-8 \hat{k}$
$Q$ 42. The power radiated by a black body is $P$ and it radiates maximum energy at wavelength $\lambda_{0}$. If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4} \lambda_{0}$, the power radiated by it becomes $n P$. The value of $n$ is

Option A $\quad \frac{256}{81}$
Option B $\frac{4}{3}$
Option C $\frac{3}{4}$
Option D $\quad \frac{81}{256}$

## Correct Option A

## Solution:

$\mathrm{P}=\mathrm{eA} \mathrm{\sigma} \mathrm{~T}^{4}$
$\mathrm{P} \alpha \mathrm{T}^{4}$
According to wien's displacement law
$\lambda_{\mathrm{M}} \times \mathrm{T}=$ constant
$\lambda_{1} \times \mathrm{T}_{1}=\lambda_{2} \times \mathrm{T}_{2}$
$\frac{\mathrm{T}_{1}}{\mathrm{~T}_{2}}=\frac{\lambda_{2}}{\lambda_{1}}$
$\mathrm{P} \alpha \frac{1}{\lambda^{4}} \Rightarrow \frac{\mathrm{P}_{1}}{\mathrm{P}_{2}}=\left(\frac{\lambda_{2}}{\lambda_{1}}\right)^{4}$
$\mathrm{P}_{2}=\mathrm{P}_{1} \times\left(\frac{\lambda_{1}}{\lambda_{2}}\right)^{4}$
$=\mathrm{P}_{1}\left(\frac{\lambda_{0}}{3 \lambda_{0}} \times 4\right)^{4}$
$P_{2}=P_{1} \times \frac{256}{81}$

Q 43. Two wires are made of the same material and have the same volume. The first wire has cross-sectional area $A$ and the second wire has cross-sectional area 3A. If the length of the first wire is increased by $\Delta l$ on applying a force $F$, how much force is needed to stretch the second wire by the same amount?
Option A 4 F
Option B 6 F
Option C 9 F
Option D 5 F
Correct Option C

## Solution:

$\gamma=\frac{\text { stress }}{\text { strain }}$
$\gamma=\frac{\mathrm{F} \times \mathrm{L}}{\mathrm{A} \Delta \mathrm{L}}$
$\therefore \frac{\mathrm{FL}}{\mathrm{A}}=(\gamma \Delta \mathrm{L})=\mathrm{constan} \mathrm{t}$
$\frac{\mathrm{F}_{1} \mathrm{~L}_{1}}{\mathrm{~A}_{1}}=\frac{\mathrm{F}_{2} \mathrm{~L}_{2}}{\mathrm{~A}_{2}}$
$\mathrm{F}_{2}=\frac{\mathrm{A}_{2} \mathrm{~F}_{1} \mathrm{~L}_{1}}{\mathrm{~A}_{1} \mathrm{~L}_{2}}$
As the volume is same for both
$\mathrm{AL}_{1}=3 \mathrm{AL}_{2}$
$\mathrm{L}_{2}=\frac{\mathrm{L}_{1}}{3}$
$=\frac{F_{1} \times L_{1} \times 3 \mathrm{~A}}{\mathrm{~A} \times \frac{\mathrm{L}_{1}}{3}}=9 \mathrm{~F}_{1}$
Q 44. A sample of 0.1 g of water at $100^{\circ} \mathrm{C}$ and normal pressure ( $1.013 \times 10^{5} \mathrm{Nm}^{-2}$ ) requires 54 cal of heat energy to convert to steam at $100^{\circ} \mathrm{C} \mathrm{C}$. If the volume of the steam produced is 167.1 CC, the change in internal energy of the sample, is -

Option A 42.4 J
Option B $\quad 208.7$ J
Option C $\quad 104.3 \mathrm{~J}$
Option D 84.5 J

## Correct Option B

## Solution:

According to first law of thermodynamics
$\Delta Q=\Delta U+\Delta W$
$\Delta U=\Delta Q-\Delta W$
$\Delta \mathrm{U}=54 \times 4.2-\mathrm{P}(\Delta \mathrm{V})$
$\Rightarrow 54 \times 4.2-\left(1.013 \times 10^{5} \times 167.1 \times 10-6\right)$
$\Rightarrow 208.7$ Joule

Q 45. A small sphere of radius ' $r$ ' falls from rest in a viscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to -
Option A $\quad{ }^{5}$
Option B $\quad r^{2}$
Option C $\quad r^{3}$
Option D $\quad r^{4}$
Correct Option A
Solution:


When terminal velocity is attained all the forces are balanced
Viscous force $=$ Weight
$6 \eta r v=\rho\left(\frac{4}{3} \pi r^{3}\right) g$
$\mathrm{v} \propto \mathrm{r}^{2}$
Rate of heat generated
Power = Fv
Power $\propto(\mathrm{mg}) \mathrm{v}$
Power $\propto \rho \frac{4}{3} \pi r^{3} g v$
Power $\propto r^{5}$

